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1 Introduction

The digital twin (DT) is a cutting-edge technological concept that has emerged as a transformative force in various
industries, including manufacturing, aerospace, healthcare, and more. At its core, a DT is a virtual dynamic
representation of a physical system [110]. The digital counterpart is a dynamic and data-driven model that
continuously updates in real-time (or near-real-time) to mirror the physical realities it represents, and is created
by collecting and integrating real-time data from sensors, IoT devices, and other sources, allowing it to mimic the
behaviour, characteristics, and status of its physical counterpart in a highly detailed and accurate manner.

The concept of a DT thus goes beyond mere simulation or modelling: it encompasses continuous monitoring [94],
analysis, and feedback loops [123], enabling real-time insights and predictive capabilities. By creating a digital
replica that mirrors (some aspect of) the physical world, organisations and industries can gain valuable insights,
optimise processes, improve decision making, and enhance performance across various domains. DTs have the
potential to revolutionise product development, maintenance, and operational efficiency, leading to significant
advancements in innovation, sustainability, and overall productivity.

As technology continues to advance, the applications of DTs are expanding rapidly, driving innovation
and transformation across diverse sectors. A 2022 global survey of 2,007 professionals [4], found that 69% of
respondents’ organisations currently leverage DT technology, with the majority of the remainder stating that
their organisation planned to adopt DT technology within the next two years. On the other hand, of the 1,393
respondents which stated that their organisation currently leverages DT technology (at the time the survey was
conducted), only eight percent claimed that their organisation begun doing so more than three years prior.

In particular, the field of healthcare is no exception to the rapid growth of DT applications. The global
healthcare DT market is estimated to produce USD 1.6 billion in 2023, and is projected to grow to USD 21.1
billion by 2028, representing a remarkable compound annual growth rate of 67% during the forecast period [70].
Recent research [70] of industry trends within this market shows that this growth is being driven by increased
demand for advanced technological solutions and the growing importance of DT technology in supporting
various healthcare applications. Hence, it is essential to review all the recent advancements and factors associated
with the use of DTs in the healthcare system.

This review paper aims to serve as a vital resource for researchers, practitioners, and decision-makers by
gathering diverse perspectives on the definitions, advancements, stakeholders, challenges, and future prospects
of DTs in healthcare. By offering a holistic understanding of this transformative technology, this paper aims to
provide insights that not only contribute to current discourse on healthcare innovation but also guide future
research, policy development, and strategic implementation in digital healthcare.

1.1 Organisation

In Section 2, we first review different definitions of the term “digital twin”. Next, we identify a list of stakeholders
in healthcare DT deployments and their respective needs in Section 3.

We then classify applications of DTs in healthcare into two main categories as shown in Fig. 1, and review
recent advances in each. The clinical and healthcare services category, described in Section 4, relates primarily to
the delivery of healthcare to individual patients, whereas the hospital management category, described in Section 5,
relates primarily to the efficient use of hospital resources to maximise healthcare throughput. A summary of the
identified applications is provided in Section 6.

Section 7 lists the challenges currently faced by healthcare DTs and describe existing and/or potential solutions
for each. Finally, discussions and concluding remarks are provided in Section 8 and 9, respectively.
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Fig. 1. Various applications of DTs in healthcare.

2 Definitions

White et al. [120] gave a very general definition of a DT: “A digital twin is a digital representation of a physical
process, person, place, system or device.” A similarly broad definition was given in [61]: “Digital twins are digital
representations of things in the real world” From these two definitions, we can conclude that as virtual models,
digital twins can be used to simulate, analyse, and optimise their real-world counterparts, enhancing understand
and decision-making across various applications.

In contrast, Trauer et al. [110] added requirements on the relationship between the physical and digital systems:

A Digital Twin is a virtual dynamic representation of a physical system, which is connected to it
over the entire lifecycle for bidirectional data exchange.

In the above definition, bidirectional data exchange means that the DT can give feedback to the real system,
which may include predictions of future state, control commands to directly alter the state of the real system, or
suggestions for product or process-oriented improvements (to be reviewed by a human operator).

A more comprehensive list of DT definitions was compiled in [13]. Despite the extensiveness of this list, a few
key terms were identified, including “virtual”, “counterpart/replica”, “simulation”, and “prediction”.
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Fig. 2. Typology of physical-digital system pairs, adapted from [80].

2.1 Relationship between the physical and digital counterpart

Kritzinger et al. [60] define three separate terms according to the level of data integration between the physical
and digital systems, as depicted in Fig. 2a-2c:

o In a Digital Model (DM), the physical and digital systems are separate and changes to one system have
no direct effect on the other. Data of the physical system may be used to develop the digital system, and
insights gained from the digital system may be used to improve the operation of the physical system;
however, all data exchange between the systems is done manually. For example, a DM for surgical planning
may be used to compare surgical approaches and analyse potential outcomes, thus providing insights to
the surgeons and medical professionals involved in the surgery, but does not directly alter the state of
the physical patient by itself. A major aspect of the digital system is the use of simulation to predict the
future state of the physical system; for example, [129] provides a comprehensive review of discrete-event
simulation in healthcare.

o In a Digital Shadow (DS), data flows automatically from the physical system to the digital system, but
not vice versa. The primary purpose of DSs is simply to mimic/visualise the behaviour of the physical
system. For example, a hospital patient may be connected to multiple sensors to monitor vital signs, with
the information combined to form a DS of the patient, but any medical interventions are still decided upon
and administered manually by medical staff.

e In a DT, automatic data flow is established in both directions, and the digital system might also act as a
controller for the physical system. For example, a closed loop insulin delivery system, also known as an
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artificial pancreas, continuously monitors a patient’s glucose levels and adjusts insulin dosages accordingly,
and can be thought of as a simple version of a medical DT. Data flow is established in both directions
(glucose level as input to the digital system and ideal glucose flow rate as output back to the physical
system), and the output is used to control the patient’s glucose levels.

Additionally, [80] propose a fourth category as an evolution of DT which adds a human to the decision-making
loop, as shown in Fig. 2d. The authors give three reasons for this:

(1) The digital system is necessarily a simplification of the physical system and thus may contain incorrect or
missing events. Therefore, decisions made by the digital system may be incorrect and should be reviewed
by a human operator first.

(2) The physical system must be maintained as the “master” system in the pair; adding a human-in-the-loop
ensures this.

(3) A DT should be non-invasive: the human operators of the healthcare system should feel in control, with the
digital system merely providing suggested actions. The human operators may choose to ignore a suggestion
or implement an alternative course of action, upon which the digital system will update its state to reflect
the actual state of the physical system.

Items 2 and 3 above are also reflected in the requirements stated in [110] that data “should only be transferred on
demand.” Additionally, Trauer et al. [110] also emphasise that the digital system need not be a full representation
of the physical system: “only data required for the respective use case should be entailed” They also differentiate
between “data” and “information”: although the physical and digital systems both exchange data with each other,
only the physical system generates information, which is then reflected in the digital space.

Notably, the distinction between a simple digital model and a DT, as defined by [60, 80], is not well-observed
in some cases. Wright and Davidson [124] express concern that such vagueness may lead people to reject the
concept of DTs as “just hype”, limiting its final level of interest and use in the long run. This highlights the
importance of a consistent typology of physical-digital system pairs such as that proposed in [80].

In summary, DTs can be used to capture and visualise a physical system’s state, predict its future state, and
suggest actions that impact upon the physical system, with or without automatic implementation, thus forming a
critical role in healthcare management and delivery. Their continuous and automatic data flow allows them to
cater to their users’ unique and real-time needs and demands, thereby enhancing their effectiveness in healthcare
applications.

3 Stakeholders in Healthcare DT Deployments

In the context of DT technology and its applications, stakeholders refer to individuals, groups, or entities that
have a vested interest or role in the creation, operation, or outcomes of the DT system or project. In this section,
we identify various stakeholders in healthcare DT deployments.

3.1 Healthcare administrators

As detailed in Section 5, healthcare administrators can use DTs for facilities and process management (e.g.,
maintaining inventory levels, setting staffing levels, identifying throughput bottlenecks, and predicting key
performance metrics). Additionally, DT-driven improvements in healthcare can reduce patient lengths-of-stay,
thus freeing up beds for additional patients, increasing revenue (in private healthcare systems), and reducing
congestion/backlogs (especially in public healthcare systems). Improved healthcare efficiency may also reduce
the need to hire additional staff, thus lowering operating expenditure. Finally, improved data management and
networking systems can reduce communication barriers between hospitals and general practitioners (GPs).

ACM Trans. Comput. Healthcare, Vol. XX, No. X, Article XXX. Publication date: August 2024.



XXX:6 « Chan, Ghosh et al.

3.2 Healthcare staff

DTs can be used by medical staff to pre-visualise certain medical procedures, assist in medical decision-making,
and in some cases even perform certain medical tasks. For example, machines for robotic surgery can perform
autonomous tissue manipulation, with the surgeon’s role redefined primarily towards decision-making rather
than physical tasks [99]. The featured system combined computer vision, machine learning, and simulation for
validation of the machine learning framework.

In addition to advances in medical treatment, especially personalised treatment/surgery, and medical diagnosis,
DTs also have the potential to change how patients are monitored and treated. For example, machine learning
can be used to alert nursing staff to the unexpected deterioration of a patient’s health or vitals, while reducing the
number of false alarms caused by traditional patient monitoring systems [35, 36, 41]. This is useful for identifying
patients at risk of septic shock, which requires urgent and timely intervention [48, 77]. On the other hand,
increased automation in patient monitoring may lead to nursing staff being required to monitor an increased
number of patients simultaneously; thus a balance must be found between staffing costs, staff burnout, and
patient risk.

3.3 Citizens/Patients

In the envisioned future, all citizens will have their own personal full-body DTs. Benefits of personal DTs for
healthcare include personalised treatment, rapid diagnoses, and personalised prediction of treatment outcomes
(e.g., response to surgical interventions) [96]. One effort towards a whole-body DT implementation is the EDITH
consortium [31].

However, the generation and consolidation of vast amounts of personal data generates concerns about security
and privacy. For example, in additional to the theft of classical personal information such as phone numbers, email
addresses, and physical addresses, health information collected for personalised treatment may be illegally sold
to insurance providers, who may raise premiums based on the patient’s predicted future health, or to potential
employers, who may reject an applicant based on predicted future inability to work. Personal health data may also
include information on spending habits, which may be sold to advertisers (e.g., whether/how often the individual
smokes or drinks). In countries with both public and private healthcare, health data may be used by advertisers to
sell the latter by targeting those on waiting lists for specific treatments at public hospitals. Therefore, to maintain
trust between citizens and healthcare providers, rigorous privacy laws and enforcement mechanisms are required,
creating a compliance challenge for healthcare administrators.

3.4 Pathology and radiology laboratories

As with hospital management, process DTs can be used to optimise operations and reduce costs in pathology [78]
and radiology labs. Additionally, DT technologies can be use to assist in making diagnoses, reducing human
error and effort. Finally, medical image databases can reduce the need for on-site slide/image storage as well as
enabling remote diagnosis work. Medical images can also be quickly shared between different labs, allowing
medical expertise to be more easily shared.

3.5 Pharmaceutical companies

As mentioned in Section 4.1, DTs of organ systems (or even the entire human body) can be used to study
interactions between the human body and potential new drugs, thus reducing costs for research and development.
For example, simulations can be conducted to select only the most promising drugs for clinical trials. Furthermore,
personal DTs could potentially be used to customise drug treatments, e.g. cancer treatments, via genetic profiling
of cancer cells.
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3.6 Medical equipment manufacturers

In addition to the development and manufacture of pharmaceuticals, DTs also play a role in the design and
manufacture of medical equipment. In the design plane, DTs are used to simulate and optimise the design of
medical devices, allowing their performance and longevity to be predicted and optimised against device cost. DTs
can also be used to tune such medical devices to individual patients to optimise diagnoses and treatments [63].

In the manufacturing plane, the design of a new assembly line can be first performed in the digital space,
allowing the design to be optimised before being realised in the physical world. Process DTs can also be used to
optimise the efficiency of existing manufacturing process chains. Finally, DTs can also be used to monitor the
health of manufacturing equipment in order to conduct preventative maintenance, and to track inventory levels
and the flow of parts through the assembly processes.

3.7 Software providers

With the “D” in DT standing for “digital”, it follows that software development plays a crucial role in healthcare
DT deployment. Therefore, software providers stand to receive significant amounts of revenue through the DTs
that they deploy, as well as the provisioning of ongoing software support.

To increase adoption, software providers need to ensure interoperability with existing medical software, using
standards such as Digital Imaging and Communications in Medicine (DICOM) [15, 38, 83] and Fast Healthcare
Interoperability Resources (FHIR) [14]. They must also fulfil all obligations regarding data security and privacy,
which may require significant expenditure for compliance experts. Any tightening of privacy laws may reduce the
value of collected patient data, thus introducing risks to the implementation of commercial patient DT projects.
Additionally, any security breaches may have major financial consequences, which may be passed on as penalties
to the service provider; for example, the WannaCry ransomware attack was estimated to have caused £3.6 to 8.2
million in damages to the UK’s NHS through lost admissions/A&E activity and cancelled appointments [39].

3.8 Insurance providers

Personal DTs could potentially be used by insurance providers to predict future illnesses and adjust insurance
policies at the individual level, e.g., premium payments and payout structures. Naturally, this potential use
of patient data is subject to limitations caused by patients’ right to privacy; however, commercial healthcare
providers may require certain privacy rights to be waived as part of their terms of service. This approach could
motivate individuals to maintain a healthier lifestyle to reduce their insurance premiums, benefiting both the
individual by encouraging better health and the insurance agency by reducing the risk they bear.

3.9 Public agencies

Government agencies are responsible for legal oversight of healthcare DT deployments, particularly in creating
laws to protect data privacy. They are also a major source of funding research, and can also grant patents to protect
the financial interests of commercial entities in healthcare DT development. Additionally, both government and
non-governmental organisations can be tasked with setting industry standards, thus ensuring interoperability
between DT implementations; examples include the National Institute of Standards and Technology (NIST)
in the United States, the British Standards Institution, and the International Organization for Standardization
(ISO) [50-52].

In India, The National Health Authority (NHA) is executing the Ayushman Bharat Digital Mission (ABDM),
uniting diverse stakeholders within the healthcare ecosystem by utilising cutting-edge technologies like artificial
intelligence, the Internet of Things, blockchain, and cloud computing. This mission ensures continuous care
by creating and establishing a digital health infrastructure, which is linked to citizens through a unique health
identification ID (UHID).
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3.10 Mapping of stakeholders to Healthcare DT applications

Figure 3 shows a mapping of stakeholders identified in this section to the applications of healthcare DTs as
identified in Fig. 1. Several applications are shown to involve multiple stakeholders; additionally, some applications
enable other applications, e.g., wearable medical devices are an important component towards the implementation
of human twins and personalized healthcare. Note that software providers and public agencies are not shown in
the graph, as their potential involvement includes all of the applications shown. The complex web of interactions
between stakeholders and healthcare applications demonstrates why a holistic view of healthcare DTs is required
to maximize their benefit.

4 DT Applications: Clinical and Healthcare Services

In this section, we summarise recent developments in DTs for clinical and healthcare services. With regard
to Section 3 regarding healthcare DT stakeholders, this section focuses on applications where the patient is
the primary stakeholder. However, healthcare administrators and staff can also benefit — improved diagnosis
procedures mean that patients’ medical problems can be detected quicker, earlier, and more accurately, and thus
can, in combination with improved treatment methods, improve patient outcomes and reduce hospital stay times
(therefore increasing throughput capacity and decreasing congestion).

4.1 Human twins and personalised healthcare

In the context of personalised healthcare, a DT refers to a virtual replica of a living (e.g., a human or part thereof) or
non-living object (drugs, medical equipment), system (a hospital department), or process. They provide real-time
insights and enable simulation for better understanding, prediction, and decision-making. In particular, human
DTs encompass a wide range of scales, from the complete human body to individual organs, cells, sub-cellular
components, and even molecular structures [18]. A “human twin” can thus be used to provide targeted and
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tailored treatments for specific illnesses or disorders, for example cancer, where no two cases are exactly the
same [42]. They may also involve interactions with non-human elements, for example viruses, proteins, or
pharmaceuticals. Furthermore, the concept of human twins has evolved from taking a gene-centric view to
encompass patient lifestyle and biological data [108].

Figure 4 shows the components and features of a potential human DT. Data is collected from various real-world
sources and used to build multiple representations in the virtual world, which are then processed by various data
analytics pipelines. The processed data is then interpreted by various parties to deliver a number of applications
or services.

4.1.1  Oncology.

e In 2019, a consortium of government, academic, and industrial partners formed the Envisioning Computa-
tional Innovations for Cancer Challenges (ECCIC) community, from which formed the idea of cancer patient
digital twins [45] for predictive oncology. Another such consortium, based in Europe, is the PRIMAGE
project [72], whose primary objective is to provide precise clinical assistance in the areas of diagnosis,
treatment allocation, and patient endpoints (prognosis) for childhood cancers.

e Mourtzis et al. [79] proposed a human twin platform for cancer diagnosis (oncology) based on the Internet
of Things (IoT), artificial intelligence (Al), and augmented reality (AR).

e Borau et al. [17] describe a multi-scale model for neuroblastoma spanning “nine orders of magnitude in
space and time”, from molecular interactions at the microsecond level to overall tumor evolution over years.

4.1.2 Cardiac/Cardiovascular.

o An early effort to build a digital simulation model (albeit not a full DT) of the human heart was the Living
Heart Project, which published such a model in 2014 [11].

o Jung et al. [55] developed a cardiac DT, focusing on the study of cardiac contraction and relaxation in
patients with aortic coarctation (narrowing). The produced DT is highly detailed, focusing on the cellular
scale.

o Gillette et al. [40] describe a cardiac DT model with a focus on the His-Purkinje system (HPS), which
governs the conduction of electrical signals in the heart. They claim that this breakthrough is important
due to two major factors hindering previous efforts to model the system: limited knowledge about the
actual topology of the HPS and the computational cost of simulating such a spatially complex network.

e Chakshu et al. [21] use inverse analysis [19] to build a cardiovascular DT for estimating blood pressure
waveforms in internal blood vessels, e.g. the aorta, based on readings from more accessible blood vessels.
One application cited is the detection of abdominal aortic aneurysms.

o Another product for the fast and robust detection of abdominal aortic aneurysms is PRAEVAorta, by the
French company Nurea [20].

o PrediSurge have developed a predictive simulation tool for the deployment of stent grafts in cases of aortic
arch aneurysms, with close agreement reported between simulations and post-operative CT scans [27].

e Nova Heart is a collaboration between UK-based AIBODY and the German Heart Center at Charite (DHZC)
to produce a cardiac DT for both clinical practice and medical instruction [105]. AIBODY has also published
an full-human virtual model named Luke, with a focus on educational purposes.

e Volpato et al. [118] describe a automated, machine-learning-based software platform by Philips for determi-
nation of left ventricular mass, an important predictor of adverse cardiovascular events. The authors found
the method to be fast and accurate, and a feasible addition into clinical practice.

Other reviews of digital twins in cardiology include [24, 25].

4.1.3  Orthopaedics and Kinesiology.
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e He et al [44] developed a system combining motion capture technology with biological models of the
human spine for real-time biomechanic prediction. This system may be used to predict risk factors towards
lumbar disc herniation and chronic lower back pain.

o Aubert et al. [9] used finite element analysis and 3D radiography to model treatments and estimate repeated
fracture risks for tibial plateau (the knee end of the shinbone) fractures.

o Alsubai et al. [3] propose an IoT-based framework for analysing real-time health data during exercises,
specifically the training and exercise sessions of athletes.

4.1.4  Neurological.

o The Blue Brain Project [71] is a long-running project since 2006 focused on constructing biologically
detailed simulation models of the mouse brain. The project covers all scales from an atlas of the entire
mouse brain [33] to the study of molecular processes at the neuron level [23]. Discussions on the suitability
of mice brains as a human analogue have also been made [56].

e Gazerani [37] describes the use of DT for personalised migraine care, including the identification of
migraine-associated biomarkers and lifestyle factors.

4.1.5 General/Other.

4.2

e A consortium of European partners, EDITH, aims to build a roadmap from human organ DTs to a full
human whole-body DT, which they call a “virtual human twin” (VHT), with a target of September 2024. A
first draft of this roadmap was published in July 2023 [31].

o Wei [119] lists ten characteristics of a potential human DT, and describes the differences between a human
DT and other types of DTs. Among these are the high variety among human beings and the high level of
interaction with the environment. Wei also describes a layer protocol for the implementation of a human
DT, as well as a potential implementation approach.

e Laubenbacher et al. [65] describe a four-stage roadmap towards a DT of the immune system, which is further
divided into eleven steps. The four stages can be summarised as application definition, personalisation,
testing, and ongoing data collection and improvement. The roadmap is designed to tackle the major
challenges of complexity in the human immune system and the difficulty of taking in vivo measurements.

o The Anatomage Virtual Dissection Table [2] is a software platform containing virtual human organs for
medical and anatomical instruction. Comparisons against physical cadaverous dissection as a means of
instruction shows comparable or favourable results for the Anatomage system [12].

e The CharakDT human DT platform, developed by IIT Indore and DRISHTI CPS Foundation (a Technology
Innovation Hub of IIT Indore under the National Mission of Interdisciplinary Cyber Physical Systems),
emphasises individual-centric and pathy-agnostic digital healthcare support, aiming to use technology to
deliver personalised and preventive care. It focuses on predictive, preventive, and personalised healthcare
by offering holistic modelling and the creation of individual, family, and community health profiles [62].

Surgical DTs

Various research has delved into the usage of DTs for pre-operative planning and surgical training [1, 28, 93,
98, 100]. Such DTs can also play a crucial role during the actual surgery by providing real-time guidance to
surgeons, enhancing situational awareness and aiding in making informed surgical decisions. They thus form
an advancement compared to static models constructed using preoperative data or teaching models that do not
correspond to a real human. A key challenge for surgical DTs is the ability to model soft-body deformations
in real-time [1]; however, multiple publications suggest that this challenge has been well-addressed in current
surgical DTs. One application of surgical DTs is minimally invasive laparoscopic surgery, due to the increased
complexities of such surgeries caused by limited access to and visibility of the surgical site [93].
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e Shu et al. [100] present Twin-S, a digital twin for skull base surgery that can update its virtual model at 28
frames per second, with a mean error of 1.39mm.

o Shi et al. [98] show how a DT for minimally invasive liver surgery, with augmented reality (AR) for real-time
navigation, can account for internal motion and deformation caused by respiration.

o Bonne et al. [16] show how a DT-based telesurgery framework can be made robust against network
instability and delays. This allows surgeons to serve remote, sparsely populated, or otherwise inaccessible
locations.

4.3 Wearable medical devices

Wearable medical devices allow for remote monitoring of patients (a “virtual ward” [68, 88, 117]), thus enabling
some patients to be discharged from hospital that may otherwise take up valuable space, e.g. those will chronic
diseases. They can also be used to build patient DTs for early diagnosis and preventive medicine.

e Hutchings et al. [49] describe the use of wearable temperature monitors for the remote management of
COVID-19 patients in Australia. Each temperature monitoring patch lasted 72 hours and three were used
for each patient’s monitoring period. The automatic temperature recordings were supplemented with video
consultations to visually assess patients and confirm vital sign readings.

e Chen et al. [22] describe “Wearable 2.0”, with an emphasis on comfort and durability (wearable devices
should be embedded into traditional clothing and be machine-washable). A supporting cloud platform is
also described in the paper.

5 DT Applications: Hospital Management

In this section, we summarise recent developments in DTs for hospital management, i.e., applications where the
primary stakeholders are hospital administrators. Other key stakeholders include specific hospital departments
(e.g. pathology and radiology), hospital staff, and medical equipment manufacturers.

5.1 Patient flow management

o Karakra et al. [57] consider a simple fictional hospital department with emulated sensor data, and construct
a series of models from a simple digital model to a full predictive DT with regular data updates from the
emulator.

e England et al. [32] demonstrate a DT for short-term bed planning, with automatic daily updates from the
physical system and a one-week forecast horizon. The model was applied to a Trauma & Orthopaedic
department and shown to accurately predict admission numbers and occupancy within the one-week
window. A similar predictive model is presented by [10] for Covid-19 bed occupancy. This is especially
important due to the time delay involved in converting a regular ward to an isolation ward for Covid-19
patients, if extra capacity is required.

e Moyaux et al. [80] describe a “very first step” towards a full DT for an ED. The DT describes a simple ED
with a single patient arrival stream, a triage nurse, a waiting room, several “boxes” for patient care, and an
X-ray room. Patient attributes include a severity score from 1 to 5 (1 being the most severe); with path
branching depending on whether the severity is 2 or less and whether an X-ray is required.

e Mater Private Hospital in Dublin, Ireland partnered with Siemens Healthineers to create a digital twin of
its radiology operations, yielding a nearly half-hour reduction in patient waiting time and significantly
reduced staff overtime costs [103].
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5.2 Patient tracking, asset management, and facilities management

o Phua et al. [91] describe an NFC-based system for hospital discharge tracking and bed management. When
a patient is due for discharge, they are given an NFC card to deposit in a box when they leave. An NFC
reader in the box will detect the deposited card and automatically notify cleaning staff of a bed to be
cleaned. In turn, a simple button press in a mobile app will notify the admission and ward staff that the bed
is ready for the next patient. The NFC-based system was shown to reduce average bed turnaround time
and admission wait time.

® Yoo et al. [126] demonstrated a locating system for mobile assets, using a combination of Bluetooth and
WiFi and covering 400 medical instruments. Despite limitations, largely caused by battery life issues, survey
data indicated that the asset tracking system was more helpful than manual management, with ICU staff
more likely than emergency department staff to agree that the system provided up-to-date information.

o A ultra-wideband radio (UWB) based tracking system was trialled in [101], achieving an precision of 10cm
or less. A major advantage of the UWB-system is that items do not need to be manually scanned. Although
the trial was limited to a single hospital room, the authors plan to conduct a full-hospital trial in the next
stage.

e Peng et al. [90] describe a hospital DT for building information modelling (BIM) and facilities manage-
ment. Cited use cases include space management (i.e., monitoring/controlling room allocations), energy
management, repair/maintenance scheduling and tracking, and Al-enhanced security.

e Another example of a DT for hospital facilitates management is given in [106], with listed applications
including environmental monitoring (e.g., temperature, CO; concentration, and PM2.5), location tracking
of patients and medical equipment, and fire and safety management.

Additionally, the following works focus on DTs for specific hospital departments and laboratories:

e Two robot dispensaries were described in [95, 115]. Although neither work used the term “digital twin”,
the combination of a robot dispensary with a real-time stock management system could be considered
an example of a DT. Rodriguez-Gonzalez et al. [95] reported reduced dispensing error and stock-out rates
and high staff satisfaction with the robotic system, with most remaining errors due to residual manual
dispensing (due to limitations of the robotic system). The time required for stock management was also
significantly reduced. However, one area in which staff showed a desire for improvement was the dispensing
speed of the robotic system. Vekaria et al. [115] also reported longer overall dispensing times (although not
significant) but improved accuracy.

e Mukherjee et al. [82] describe a roadmap towards building a hospital DT, with an initial focus on the
histopathology lab at a regional hospital in the United Kingdom.

e Zhong et al. [130] present a DT model for an intensive care units, incorporating patient tracking, staff
management, and asset/equipment management.

5.3 Portering

Within the context of a hospital, portering is the act of delivering materials, equipment, and patients between
different departments and locations.

o Liu et al. [69] describe a logistics system with automated guided vehicles and robotic porters for the delivery
of food, medication, and linens within a hospital.

e Law et al. [66] discuss the use of robot porters in hospitals, with focus on sample collection (blood and
urine) and food delivery. Respondents from both sites said that the robots could be a good addition to their
facilities.

o Lee et al. [67] add location monitoring to their robotic porter management system, thus approaching a
true portering DT, unlike the previous two examples. In addition to providing a real-time tracking system,
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porters’ traces were collected for five months and analysed to find ways to improve the efficiency of the
system.

5.4 Advances in medical equipment

o Phillips [114] describe how DTs for medical equipment can be used for device diagnostics, design and
performance improvements, predictive maintenance, and optimised operations. In particular, predictive
maintenance allows equipment maintenance to be scheduled at a time when the equipment is not in use,
thus minimising disruption to service delivery. They also describe how DT technology can be used in for
prototyping new products, reducing the time and number of physical iterations required. One use case
cited was the development of a portable oxygen generator for patients with breathing problems.

o Ang et al. [7, 8] describe the development of a “virtual patient framework” for testing designs for mechanical
ventilation, in which patient data needs to be continuously monitored to optimise pressure and flow settings.

6 Summary of Healthcare DT Applications

Based on our review of healthcare DTs in the preceding sections, we identify a number of applications of DT
technology in healthcare systems, as listed below.

(1) Enhanced patient care: DTs are transforming personalised medicine and patient care by creating virtual
human and organ replicas, enabling better prediction of patient outcomes and responses to various medical
interventions (e.g., drug treatments or surgery) and allowing such treatments to be personalised for each
individual patient. They have also led to new innovations in surgery by allowing surgeons to better visualise
the body parts/organ systems being operated on. By simulating the results of medical procedures, patient
risks can be reduced.

(2) Research and development: DTs have the potential to revolutionise clinical research by swiftly identifying

research directions, virtually modelling trial participants, enhancing compliance, and expanding trial
diversity through IoT and telemedicine integration. Patient-specific DTs continuously collect medical data,
predicting future health issues with machine learning.
DTs also have the potential to transform the design and production of new medical equipment by virtually
modelling manufacturing processes, enhancing product designs and eliminating inefficiencies. The virtual
models can be used to predict the lifetime of manufactured components as well as identifying the most
likely failure modes.

(3) Medical training: Human DTs will allow medical trainees to practice medical procedures on a virtual body,
allowing greater opportunities for hands-on experience and a potentially higher level of realism compared
to practising on cadavers. Simulation designers can also emulate medical emergencies to enhance the
training experience. Artificially generated medical images and other patient data can be used for medical
diagnosis training.

(4) Risk identification: At the personal level, DTs use patient data, machine learning, and early health
indicators to assess risks, guide healthy behaviours, and design preventive programs. At the hospital level,
DTs consolidate data from various sources to forecast bed demand, which is vital for enhanced patient care
amid workforce challenges and rising healthcare demand.

(5) Personalised insurance: By utilising human DTs, individuals can access customised and cost-effective
medical insurance. Healthy individuals with low-risk lifestyles may be offered cheaper insurance policies
compared to generic plans, based on a predicted lower risk of future disease or injury.

(6) Enhanced inventory management: DTs can be used to track stock levels in pharmacies, as well as
general inventory management in hospitals and laboratories. Spare inventory targets can be adjusted

ACM Trans. Comput. Healthcare, Vol. XX, No. X, Article XXX. Publication date: August 2024.



Healthcare Digital Twins: Advances, Stakeholders, and Challenges « XXX:15

(Model granularityj

Challenges in DT
Development/Deployment

[Rollout challenges]

/

Interoperability Data

Synchronisation

Fig. 5. A categorization of challenges in Healthcare DT Development/Deployment.

according to seasonal changes in demand. This proactive approach helps prevent shortages of essential
medicines and medical kits during emergency situations.

7 Challenges in Healthcare DT Development/Deployment

In this section, we examine a number of challenges in healthcare DT development/deployment as well as existing
and potential solutions for each. A summary of challenges considered in this section is provided in Fig. 5.

7.1 Data security and privacy

As healthcare data can have high value, it is important to prevent its unauthorised access/use. The WannaCry
ransomware attack of May 2017 is a strong example demonstrating the importance of data security in healthcare.
In the United Kingdom, 34 NHS trusts were infected, becoming locked out of their digital systems and medical
devices, whereas 46 other trusts reported disruption due to either preventative action or additional overflow
demand from the infected organisations [39]. Disruption continued over the next week [39]. Moreover, it was
found that the reason why the attack was possible was due to unpatched versions of Microsoft Windows — while
a patch for the exploit was made freely available for newer versions of Windows, the NHS would have had to pay
for extended support for machines still running Windows XP, and funding for this was terminated in 2015 by
then-Secretary of Health Jeremy Hunt [75].

Lack of funding was also listed as a major challenge towards healthcare data security in [53], especially for
rural hospitals. Outsourcing was listed as a solution [75], but it was noted that while enabling hospitals to
do more with less, outsourcing also led to a sense of complacency as the responsibility for cybersecurity was
“offloaded” to someone else. Research institutions using healthcare data obtained from hospitals are also a target
for cyberattacks: in 2023, one such attack led to the leaking of over a million NHS patients’ details [109].

Closely related to the issue of data security is that of privacy: to prevent unauthorised access to healthcare
data, one must first define what are the appropriate use cases for the data in the first place. The United Kingdom’s
National Data Guardian defines eight Caldicott Principles, named after the late Dame Fiona Caldicott [84]:

(1) Justify the purpose(s) for using confidential information.

(2) Use confidential information only when it is necessary.

(3) Use the minimum necessary confidential information.

(4) Access to confidential information should be on a strict need-to-know basis.

(5) Everyone with access to confidential information should be aware of their responsibilities.
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(6) Comply with the law.
(7) The duty to share information for individual care is as important as the duty to protect patient confidentiality.
(8) Inform patients and service users about how their confidential information is used.

Technologies for data security include cryptography and biometrics [104]. However, one major factor in
data security and privacy is the human factor, i.e., the unauthorised sharing of data in its unencrypted form by
individuals with access [104]. Therefore, regular staff training is required to imprint the importance of proper
security and privacy practices (while also balancing the risk of training fatigue if training is conducted too often).

7.2 Data integrity

Whereas data security and privacy relate to the accessibility of data, data integrity relates to its trustworthiness,
e.g., ensuring that data originates from its claimed source and has not been tampered with. The importance of
data integrity has increased in recent years due to the emergence of generative Al, making it easier for data to be
faked. Faked health data may be used to obtain cheaper medical insurance, or to cause harm to others (by hiding
medical conditions requiring treatment or suggesting the need for medical interventions that would otherwise
not be recommended).

Technologies to protect data integrity include digital signatures, digital watermarking, and blockchain [104].
Digital signatures are used to authenticate the identity of a data item’s creator; for example, the Pretty Good
Privacy (PGP) protocol provides digital signing as well as encryption. Digital watermarking uses steganography
to hide additional metadata within an image, e.g. a digital signature, while minimising its effects on visual quality,
and can be used to prevent image tampering or the generation of fake medical images. Finally, blockchain is a
technology for implementing an append-only distributed ledger, i.e., a dataset with embedded and immutable
history, such that all changes to the data are permanently recorded within the chain. However, blockchain is
subject to concerns over high energy consumption, and is generally not needed in many use cases. The National
Institute of Standards and Technology (NIST) has published Fig. 6 to highlight alternatives to blockchain [125],
e.g., a centrally managed encrypted database.

7.3 Big-data-related challenges

With medical data in the U.S. expected to reach the yottabyte (10002 bytes) scale [34], new solutions are required
for the storage and analysis of this data. In the literature, aspects of big data have been traditionally catalogued as a
set of V’s: for example, the initial 3V taxonomy included volume, velocity, and variety, whereas newer taxonomies
typically include additional V’s. An example 7V taxonomy [112] is shown in Table 1.

7.3.1 Data storage. In addition to the challenges of data security, privacy, and integrity as described in the
previous subsections, data storage itself is a major challenge for big data. A likely solution for this will be to
rent storage capacity from a third-party provider, such as AWS, Google Cloud, or Azure. Two main options for
healthcare providers are (a) Software as a Service (SaaS), where the cloud provider provides a software interface
to the underlying hardware, e.g. a database management system, and (b) Infrastructure as a Service (IaaS), where
the cloud provider provides direct access to storage and compute resources. Regardless of the type of service
provided, using external service providers means that hospitals can outsource the problems of scalability and
data security to specialised experts.

Since generally only the most recent data will need to be accessed frequently, data storage providers will
need to use different storage technologies to optimise the trade-off between storage costs and data latency.
Such technologies include solid-state storage, magnetic disc storage, magnetic tape storage, optical disc storage,
holographic data storage [6], and DNA-based storage [29]. Other concerns that data storage providers must
consider include energy consumption [58, 74], datacenter cooling [128], data redundancy and loss protection,
equipment procurement, maintenance and replacement, networking capacity management, and load balancing.
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Fig. 6. NIST flowchart on blockchain suitability and alternatives [125].

7.3.2 Data analytics. The large amount of data generated by healthcare systems will require novel big data
analytics tools to maximise the generated value of this data. One proposed solution is using edge or fog comput-
ing [64] to filter out unimportant data, thus reducing the storage and communication bandwidth requirements of
the network. For example, a location tracker might only send an update to the central server when a change
in location is detected, rather than providing periodic location updates. Edge and fog computing has also been
proposed as a solution for fall detection, for example in hospitals and residential care homes [81, 92].

Another aspect of the big-data challenge is that a large portion of medical data, especially clinician notes, is
unstructured. Natural language processing is a machine learning tool that may help to identify patterns in clinical
diagnoses [59]. However, such tools are known to posses a number of problems such as amplification of existing
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Table 1. A 7V taxonomy of big data attributes [112]

A\ Definition

Volume  The size of the data, e.g. in petabytes or exabytes.

Velocity  The frequency at which new data is generated; the speed of the feedback loop from data input to
decision (stale data leads to improper decisions).

Variety =~ The many formats in which data can appear, including unstructured data.
Veracity  The reliability (truthfulness) of the data.

Validity ~ The correctness of accuracy of the data with respect to its intended use.
Volatility Data can be invalidated by new data or by natural expiry after a given timeframe.

Value The desired outcome of big data processing.

biases in the training data and lack of explainability with respect to decisions made by the model. Furthermore,
the data entry and validation required to train a such machine learning algorithm can be substantial [85].

7.4 Data synchronisation

As a DT contains both a physical and virtual component, frequent data synchronisation is required to maintain
high fidelity between the two. Additionally, where the virtual component is used for prospective/predictive
purposes, it is necessary to be able to restart a model simulation from the newly input state. This can be done
using the following series of steps:

(1) Serialise the physical system state into a machine-readable format, e.g. JSON, YAML, or BSON (binary
JSON).

(2) Update the state of each entity in the virtual system based on the serialised state.

(3) Recompute the current resource usage based on the entity states.

(4) Recompute the estimated remaining time of each entity in their current state.

(5) Continue simulation of the virtual system based on the updated system state.

7.4.1  Survival functions. In particular, Step 4 above requires an estimate of the survival function of a particular
process’ duration, namely the probability S(x) that a task will take at least x time units. From there, a conditional
survival function S(x + t;¢) = S(x + t)/S(¢) can be defined as the probability that a task will take at least x
additional units of time, given that ¢ time units have already elapsed. The remaining times of simulation entities
in a given state can then be sampled using these conditional survival functions.

Note that for exponentially distributed task durations, S(x + t;t) = S(x); analytical methods for computing
S(x) also exist for the Gamma and Weibull distributions [102]. However, in other cases, empirical methods may
be required to estimate S(x).

7.4.2  Real-time computing. In certain cases, a DT may be used to control the physical system in real-time. In
such cases, real-time computing techniques are required to ensure timeliness of responses. Martin [73] defines
a real-time computer system as “one which controls an environment by receiving data, processing them, and
returning the results sufficiently quickly to affect the environment at that time.” Note that, when evaluating
the value produced by a real-time system, the value of a late result is often zero; for example, prediction of the
future state of a DT is useless if the moment in time to be predicted has already occurred. Real-time computing
thus generally requires that certain operations are completed in a fixed number of computer clock cycles — this

ACM Trans. Comput. Healthcare, Vol. XX, No. X, Article XXX. Publication date: August 2024.



Healthcare Digital Twins: Advances, Stakeholders, and Challenges « XXX:19

involves not only CPU computation but also the management of memory access and network delays. One method
proposed for reducing latency in healthcare systems is edge computing [64, 116], which moves computation and
data storage in a networked system as close to the sources of data as possible.

7.5 Data interoperability

One major challenge when different medical institutions work together is data interoperability. For example,
hospitals and general practitioners may need to share patient data, and hospitals may outsource certain services
(e.g., pathology) to other hospitals in the region or to external consultants. On the other hand, recent surveys on
interoperability in the UK medical system (the NHS) revealed that less than a quarter of surveyed NHS Trusts
share care records digitally with non-primary care providers, and a third of Trusts could not digitally access
outside patient data [127]. Even within a single hospital, there may exist a variety of software systems that need
to communicate with each other, often with incompatible data formats. According to Sullivan [107], the average
hospital runs 16 distinct electronic health records platforms! This results in the need for data to be duplicated
across systems and introduces many vectors through which errors can be introduced. For example:

e Many medical service requests (e.g., pathology) still rely on paper forms [122]. This means that digital data
often needs to be re-entered manually when transferred between systems. This is a waste of time for the
staff tasked with re-entering the data, and errors can be introduced at this step. Additionally, the transfer
of paper forms was noted during the Covid-19 pandemic to be a possible infection risk [122].

e Paper forms can also be lost. This is particularly problematic if the recipient of the data does not typically
acknowledge receipt of the data immediately, as relevant processes cannot proceed until the data loss is
detected.

e Dates may be corrupted, for example if a date in DD/MM/YYYY format is interpreted using the MM/DD/YYYY
format or vice versa. This can often occur when data is copied as plaintext rather than using an internal
representation, e.g. Unix timestamps. However, standardised plaintext formats such as ISO 8601 can prevent
such issues while remaining human-readable.

e Units may be confused, which may lead to incorrect dosages of medication.

To avoid the above problems, data transfer between systems should be paperless and fully automated, with a
common data format understood by all systems. Health Level 7 is a set of international standards for the transfer
of clinical and administrative data between systems. In particular, the Fast Healthcare Interoperability Resources
(FHIR) standard defines a RESTful (REpresentational State Transfer) interface for the exchange of medical
information [14]. Within the UK NHS, examples of services with FHIR APIs include the Personal Demographics
Service [86] and the Summary Care Record [87].

7.6 Model granularity

A major challenge in DT construction is achieving a high enough level of detail to adequately represent the real
system. For example, an analysis of a patient’s journey through the Majors unit in an emergency department in a
UK hospital revealed 73 different processes and ten different roles [5]. At this level of detail, a process model of
an entire emergency department is likely to be overly complex, requiring large amounts of human resources
to develop and maintain. This issue is magnified when constructing models of even greater scale such as an
entire hospital, a regional network of hospitals, or even a national healthcare network. To avoid this, multi-scale
models are required, such that at larger scales, finer details of the model are abstracted away and replaced with
simplified versions. Multi-scale models are even more important for human DTs. For example, [17] describe
a model for neuroblastoma (a form of cancer) spanning “nine orders of magnitude in space and time”, from
molecular interactions to metastasis (the migration of cancer cells within the human body).
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Table 2. Free and/or open-source software for information systems

Application Example software tools

Database MySQL, PostgreSQL, Redis, Citus

management

Electronic health GNU Health, OpenEMR [97]

record

DICOM/PACS server Orthanc [54]

Database MySQL Workbench, DBeaver, Visual Paradigm Community Edition
visualisation and

design

Data processing tidyverse [121], pandas

Data visualisation tidyverse (ggplot2), matplotlib, seaborn, Plotly [26]

Dashboarding Dash [26], Genie [89]
Discrete event simpy, salabim [113], simmer [111], JaamSim, Warteschlangensimulator [47]
simulation

For more detailed models, or finer levels of a multi-scale model, one major challenge may be the lack of
available data. For example, for process simulations, not only may timestamps for various steps in the process
be unavailable, but the steps in the process may themselves be poorly defined. In the context of emergency
department modelling, [30] provide an algorithm for estimating missing patient timestamps (i.e., imputation) and
correcting errors due to delayed or duplicate timestamp entry. They also demonstrate a method for extracting
patient trajectories from this corrected list of patient activities.

7.6.1  Enhancement of monitoring and information systems. In addition to data imputation, additional monitoring
systems can be installed to increase the amount of data available for digital twinning of a system. However, this
poses a challenge due to tight financial constraints in many hospital systems. To reduce costs, one can borrow the
“Shoestring” approach from digital manufacturing [43], which is based on the assembly of low-cost, off-the-shelf
components and software to meet companies and organisations’ digital needs [76]. For example:

e Edge computing can be provided using low-cost single-board microcontroller kits such as Arduino or
Raspberry Pi.

o Seeed Studio produces the Grove series of low-cost sensors, compatible with both Arduino or Raspberry Pi
micro-controllers.

e Open-source software can be used for various aspects of the information system as shown in Table 2. The
use of free and/or open-source software prevents vendor lock-in, e.g., due to proprietary file formats or
communications protocols. However, some free software may have limited functionality compared to the
commercial edition of the same product.

7.7 Roll-out challenges

The rollout of a new hospital information system, such as one used by a DT, can be disruptive. This is especially
true for ‘big-bang’ rollouts, in which the new system goes live all at once rather than in stages. For example, when
the Electronic Medical Record (EMR) software Epic went live at Cambridge University Hospitals (CUH) on 26
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October 2014, a number of problems immediately occurred [46], culminating in a 20 percent drop in emergency
department performance, large productivity decreases in outpatient clinics, and the eventual resignation of CUH’s
executive director. Similar problems were reported in a Danish case [46], with rushed deadlines set by Epic cited
as a factor:

o When the designated clinician team failed to make configuration decisions in time, Epic would forge ahead
with a ‘default’ functionality instead.

e When the completion of training materials was delayed, the training schedule was compressed rather than
pushing back the go-live date.

e Reconfiguration of the Epic system continued during training, causing such training to immediately become
obsolete. Only one of 149 survey respondents felt comfortable using Epic one month after go-live, compared
to a target of 80 percent.

Most of the problems associated with Epic’s initial rollout at CUH have been resolved, and CUH has now
reached EMRAM (Electronic Medical Record Adoption Model) Stage 6 [46]. However, the initial rollout problems
experienced by CUH and others may discourage new hospitals from launching similar digitalisation projects.

8 Discussion

DTs have emerged as a transformative force within the healthcare sector, poised to revolutionise various facets
of the industry. Advancements in DT technology, complemented by progress in IoT and sensor technology, big
data analytics, and artificial intelligence, have led to a surge in the diversity and number of DT applications. For
example, healthcare management DTs play a pivotal role in optimising operations, encompassing tasks such as
patient monitoring and flow management in emergency departments, operating theatres, and wards, process and
inventory management in pharmacies and laboratories, and overall facilities management in healthcare buildings.
Such optimisations offer the potential to streamline healthcare services, enhance resource allocation, and reduce
patient waiting times, benefiting both patients and healthcare professionals. DT technologies may also lead to
improved automation opportunities, such as drug dispensing at pharmacies and portering in hospitals.

Moreover, DTs facilitate personalised healthcare via the construction of human DTs, with treatments, in-
terventions, and even drugs specifically tailored to each individual for improved patient outcomes. They also
allow better visualisation of the human interior, with potential benefits in laparoscopy, thus minimising the
invasiveness of surgical procedures. Multi-scale DTs can even model the human body at different scales from the
entire human to molecular level, with potential applications in drug development — researchers can predict both
how drugs interact with individual cells and their effect on the human body as a whole. Another application of
human DTs is to provide simulated training environments for surgical trainees, reducing patient risk during real
surgical procedures by improving training effectiveness.

Finally, improved sensing technology, such as wearable medical sensors, will lead to advancements in remote
medicine, where patients will chronic illnesses can be monitored and possibly even treated at home. This will
reduce the demand for scarce hospital space, reducing congestion in hospitals and care homes and improving
patient outcomes.

9 Conclusion

In this survey, we first examined various existing definitions of a DT. In particular, we emphasise automatic
bidirectional data exchange as a property of full DTs, as opposed to digital models and digital shadows where
such data flows may be missing or manually triggered. Next, we examined various existing applications of
DTs in healthcare, based on the two main categories of hospital management and healthcare services. Next, we
identified a list of stakeholders in healthcare DT deployments, as well as their roles and interests in DT creation,
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operation, and outcomes. Finally, we examined a number of challenges in healthcare DT development and
deployment, as well as existing and potential solutions for each.

Many of the challenges mentioned in this paper for hospital DTs are related to complexity and scale. To
extract maximum value, hospital activities and assets need to be modelled with high fidelity and fine granularity,
generally requiring additional data collection, which may add to a hospital’s operating costs. Furthermore, the
interactions between large numbers of hospital systems require data interoperability and big data solutions to
combine multiple subsystem DTs into a hospital-wide DT. Additionally, the scale required for a full-hospital DT
can pose major rollout challenges.

Integrating various digital healthcare solutions from academia and industry is essential for creating a holistic
DT-based healthcare system. This can be achieved by incorporating diverse technology elements contributed
by multiple developers, thereby enhancing the system’s capabilities through a range of integrated solutions.
Ensuring interoperability of these solutions and devices is crucial for seamless functionality. For a sustainable
DT-based system, it is vital to connect technology developers with hospitals and data sources for validation, while
also linking hospitals and practitioners to the available technology. This not only ensures the commercial viability
of the system but also fosters a collaborative ecosystem. The focus on predictive, preventive, and personalised
healthcare is central to this approach, involving holistic modelling and the creation of health profiles at individual,
family, and community levels. This comprehensive integration will drive advancements in personalised care and
improve overall healthcare outcomes.

Although technical solutions are described or proposed for most of the challenges mentioned in this paper,
one challenge that remains is that of funding. As shown by the WannaCry cyberattack example [39] (which was
caused by a security flaw patched in later versions of Microsoft Windows but not Windows XP), digital security
is often a victim of lack of funding, with potentially major consequences. While “Shoestring” solutions can help
to reduce costs in other areas, ensuring digital security requires solution providers to prioritise it, even if this
limits the value that can be extracted from the data. While outsourcing digital security to third-party experts can
reduce cost and reduce the risk of poor security implementations, healthcare providers should still be responsible
for ensuring that the services rendered meet all security and privacy requirements. Additionally, when selecting
Shoestring solutions, healthcare providers need to balance the cost benefits of open-source software versus the
benefits of commercial software with paid ongoing vendor support and the possibility of feature customisation to
best suit the healthcare provider’s needs (while open-source software, by their very nature, can also be customised,
most healthcare providers will lack the necessary expertise to do so).
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