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ABSTRACT The 2019 novel coronavirus disease (COVID-19) outbreak has become a worldwide problem.
Due to globalization and the proliferation of international travel, many countries are now facing local
epidemics. The existence of asymptomatic and pre-symptomatic transmissions makes it more difficult to
control disease transmission by isolating infectious individuals. To accurately describe and represent the
spread of COVID-19, we suggest a susceptible-exposed-infected-hospitalized-removed (SEIHR)model with
human migrations, where the ‘‘exposed’’ (asymptomatic) individuals are contagious. From this model,
we derive the basic reproduction number of the disease and its relationship with the model parameters.
We find that, for highly contagious diseases like COVID-19, when the adjacent region’s epidemic is not
severe, a large migration rate can reduce the speed of local epidemic spreading at the price of infecting the
neighboring regions. In addition, since ‘‘infected’’ (symptomatic) patients are isolated almost immediately,
the transmission rate of the epidemic is more sensitive to that of the ‘‘exposed’’ (asymptomatic) individuals.
Furthermore, we investigate the impact of various interventions, e.g. isolation and border control, on the
speed of disease propagation and the resultant demand on medical facilities, and find that a strict intervention
measure can be more effective than closing the borders. Finally, we use some real historical data of
COVID-19 caseloads from different regions, including Hong Kong, to validate the modified SEIHR model,
and make an accurate prediction for the third wave of the outbreak in Hong Kong.

INDEX TERMS COVID-19, modified SEIHR model, disease transmission model, disease control, human
migration.

I. INTRODUCTION
The Coronavirus Disease 2019 (COVID-19) pandemic has
resulted in over 34.4 million reported cases and 1.02 million
deaths throughout 188 countries and territories (as of
3 October 2020) [1] and has caused great concern among
governments, the World Health Organization, and scien-
tists worldwide over the past few months. The outbreak
of COVID-19 has been more rapid and widespread than
the Severe Acute Respiratory Syndrome (SARS) outbreak
in 2003 and the Middle East Respiratory Syndrome (MERS)
outbreaks in 2012 in Saudi Arabia [2], [3] and 2015 in
South Korea. If stringent intervention measures are not taken
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to restrain the pandemic, COVID-19 may eventually reach
the same level of devastation as the ‘‘Spanish Flu’’, which
infected 500 million people and caused 17–50 million deaths
worldwide [4].

One reason why COVID-19 spreads so rapidly is that
infectious individuals are contagious in the latent period, and
a significant proportion of infected individuals do not show
any symptoms throughout the entire course of the disease [5].
Since these cases are extremely difficult to detect and isolate,
they can easily cause what are known as pre-symptomatic and
asymptomatic transmissions, respectively, making it much
harder to control the outbreak. Furthermore, the exponential
increase of the numbers of patients in most regions has had
a devastating impact on healthcare systems worldwide, fur-
ther increasing the already high death rates. Therefore, it is
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extremely important to monitor the spreading processes of
COVID-19 and study its medical and social impacts.

A. MATHEMATICAL MODELS FOR EPIDEMIOLOGY
In the early 20th century, Ross [6] established a mathematical
model for the transmission of malaria between humans and
mosquitoes, and proposed the concept of a threshold value
for the spreading of the disease. This concept was further
refined by MacDonald [7] who proposed what has become
known as the basic reproduction number R0 of a disease.
R0 has the property that an epidemic will persist if R0 > 1
but will diminish if R0 < 1. Therefore, the derivation of R0
is a key step in the development of various epidemiological
models.

A definitive work on epidemiological models is due
to Kermack and McKendrick [8], [9], who proposed
compartmental models to describe the number or pro-
portion of individuals within a population in various
states (‘‘compartments’’) using a set of differential equa-
tions. Examples of compartmental models include the
susceptible-infected-recovered (SIR) model [8], susceptible-
infected-susceptible (SIS) model [9], and susceptible-
infected-recovered-susceptible (SIRS) model [10], which are
used to describe diseases spreading where recovery from
infection provides permanent immunity, no immunity, and
time-limited immunity, respectively. For diseases that have
latent periods in spreading, like seasonal flu, the susceptible-
exposed-infected-recovered (SEIR) model [11] is used
instead. For a detailed study on how to obtain R0 for various
compartmental models, see [12].

The compartmental models described above are based on
mean-field approximations, i.e. the behavior of the popula-
tion is considered representable by the mean behavior of all
individuals in the same compartment. In reality, the trans-
mission rates of some individuals (‘‘superspreaders’’) can be
substantially higher than the average. Network-based mod-
els [13], [14] can be used to model the disease-spreading
capability of individuals. Network models can also be used
to describe the interactions between people and epidemics in
multiple cities. It was shown [15] that restricting migration,
while delaying the spread of disease between cities, did not
necessarily constrict the epidemic peak in some cities.

Nevertheless, due to the simplicity of mean-field models
compared to network-based models, in this article we use
a mean-field-approximation-based compartmental model to
track the evolution of COVID-19 in a community and show
how such a simple model can still lead to new insights regard-
ing disease control. We not only make the E compartment
contagious, but also add a new H compartment to the afore-
mentioned SEIR model to represent isolated or hospitalized
cases and examine the effects of migration into and out of
the affected community, as well as the effects of parameter
changes corresponding to various government interventions.
Our model is the first to consider simultaneously all con-
cerned features to describe COVID-19, although each has
been considered separately in some previous work [16].

B. RELATED STUDIES ON COVID-19
During the initial spread of COVID-19, some traditional and
modified SEIRmodels were used to predict the genesis of the
epidemic in Wuhan [17]. However, these models generally
did not consider the asymptomatic transmission capabilities
of COVID-19, corresponding to ‘‘exposed’’ individuals in the
SEIR model. This led to a significant underestimation of the
extent of the COVID-19 spread. This omission was generally
corrected in later studies; for example, the study in [18]
emphasizes the importance of early interventions to shield
susceptibles from infection, rather than targeting infected
cases alone, especially for diseases with asymptomatic trans-
mission such as COVID-19.

1) TRANSMISSION DYNAMICS
It is crucial to understand the transmission dynamics of the
COVID-19. With an accurate estimate of the basic reproduc-
tion number, governments can take effective actions against
the pandemic. It was shown in [19] that the basic reproduction
number of the COVID-19 is higher than SARS. In [20],
the transmission dynamics and the geographical characteris-
tics of the COVID-19 pandemic in Italy is studied and the
basic reproduction number is estimated for different areas.
In [21], the importance of air pollution-to-human transmis-
sion and the human-to-human transmission is demonstrated,
suggesting that the former is stronger than the latter. Further-
more, the containment measures in Italy in [22], where it is
found that the sequence of restrictions imposed to mobility
and human-to-human interactions can significantly reduce
the virus transmission.

2) MIGRATION EFFECTS
The consideration of migration effects was also a key fea-
ture in many COVID-19 studies. In [23], the study on the
early dynamics of transmission in Wuhan showed that newly
introduced cases in one area might eventually lead to new
outbreaks. In [24], it warns that a global pandemic might
happen unless substantial interventions are taken globally.
In [25], a modified SEIR model is used, with migration into
and out of the susceptible and exposed states, showing a good
fit between the estimated and observed data for three Chinese
provinces and for China as a whole. Additionally, an artificial
intelligence technique was used for model prediction, using
training data obtained from SARS, and demonstrated to be
remarkably accurate. Migration data for China was used
in [26], predicting that the numbers of infections in most
cities in China would peak between middle February and
earlyMarch 2020, whichwas indeed the case. In light of these
results, we will also incorporate migration into our proposed
compartmental model.

3) TRAVEL RESTRICTIONS
With regards to the implementation of travel restrictions,
in [27] a complex network model is implemented and two
strategies are compared: adaptive clustering, which mimics
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self-isolation of small cliques within a larger community,
and instant clustering, which mimics the imposition of
hard border controls between cities and/or countries. It was
demonstrated that the adaptive clustering strategy was more
effective for preventing epidemic spread than instant cluster-
ing, due to the remaining weak connections between clus-
ters caused by the impossibility of perfect border control.
Additionally, in [28] the adverse effect of delaying the intro-
duction of travel restrictions is demonstrated: by the time
border controls were imposed onWuhan on 23 January 2020,
many Chinese cities had already received a large number
of infected travelers. While a slight delay in epidemic pro-
gression was observed abroad, it was concluded that travel
bans are only effective when combined with a significant
reduction in local disease transmission. On the other hand,
a study of human outflow from Wuhan in the weeks before
the 23 Jan 2020 lockdown [29] suggests a strong correlation
between the migration flow size fromWuhan to each Chinese
province and the scale of the epidemic in that province (up to
mid-February 2020).

C. CONTRIBUTIONS OF THIS ARTICLE
Enlightened by the SEIR model and recognizing the features
of COVID-19, in this article we propose a compartmental
model to study the spreading process of COVID-19 and its
impact on the public healthcare systems.Wemodify the SEIR
model as follows: First, we modify the E compartment of
the SEIR model to allow for asymptomatic transmissions;
Second, we introduce a hospitalized (denoted H) compart-
ment, thus forming an SEIHR model. Unlike the ‘‘infected’’
(I) compartment, individuals in the H compartment are
assumed not to transmit the disease to others, due to strict
quarantine measures within the hospital setting. As a result,
we find that in the SEIHR model, the key factor influencing
the overall transmission rate is that of the ‘‘exposed’’ (i.e.
asymptomatic but potentially infectious) individuals, rather
than those in the I compartment which are assumed to be
transferred to the H compartment quickly. In other words,
the quick transfer of infected people from the I compartment
to the H compartment can effectively isolate these people
from the susceptible population and further lower the speed
of disease transmission. Note that the number of people in
the E and I compartments are assumed to be unknown, and
only people in the H compartment are observable as having
the disease.

In addition to the H compartment, we also model the effect
of migration to and from each of the various compartments
in the SEIHR model. We introduce a parameter to describe
the relative scale of the epidemic in the external region, and
discover that, when the local pandemic ismore severe than the
global one, border control policies may not be very helpful for
lowering the transmission speed of the virus. However, if we
do not impose the border control policy, the exported cases
will spread the disease worldwide. Next, we fit the parameters
of our model to COVID-19 caseload data from five global
regions and compare the quality of our fit against the SIR

TABLE 1. Definition of parameters. Note that not all parameters are used
in some of the models in this article.

and SEIR models, as well as quantifying the effect of various
local intervention measures. The results demonstrate that by
using a single parameter to represent the overall strength of
all local interventions at a given stage of the epidemic, we can
capture the local dynamical changes and further forecast the
epidemic trend.

Compared with the traditional SIR and SEIR model,
the additional compartment (H) and the dynamics between
all compartments help us capturing the property of the
COVID-19 pandemic more accurately. The contribution pre-
sented here distinguishes itself from previous work on com-
partmental models by being able to more efficiently represent
characteristics of infection-spread dynamics and interven-
tions. This is reflected in the fitting accuracy achieved for
a given control effort. Furthermore, the proposed model is
heuristically justifiable and interpretable from a human per-
spective, requiring only five compartments, making it of great
practical value in applied epidemiology.

II. MODEL AND ANALYSIS
With regards to the insight previously gained regarding the
COVID-19 pandemic, we propose an SEIHR model with
migration to estimate the progression of COVID-19 out-
break. In addition to modeling human migration, our pro-
posed SEIHR model differs from the traditional SEIR model
in that we add a hospitalized (H) compartment and make
the exposed (E) state contagious, to model transmissions
from both asymptomatic and pre-symptomatic people. The
proposed model thus consists of five states: susceptible (S),
exposed (E), infected (I), hospitalized (H) and removed (R).
The number of deaths in the proposed SEIHR model is esti-
mated as a fixed proportion of the number of removed people.
Natural births and deaths can be incorporated as ‘‘migration’’
to and from a non-alive state.

Table 1 shows all the parameters used in the SEIHRmodel.
The system of differential equations that describes the SEIHR
model can be written as

dS(t)
dt
=

[
−εk

E(t)
N (t)
− αk

I (t)
N (t)
+ (1in −1out)

]
S(t), (1a)
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FIGURE 1. Inter-compartmental dynamics of the SEIHR model.

dE(t)
dt
=

[
εk
E(t)
N (t)
+ αk

I (t)
N (t)

]
S(t)

+ [−β − δE +1in −1out]E(t), (1b)
dI (t)
dt
= βE(t)+ [−γ − δI −1out] I (t), (1c)

dH (t)
dt
= [γ +1in +1out] I (t)− δHH (t), (1d)

dR(t)
dt
= δEE(t)+ δI I (t)+ δHH (t), (1e)

where S(t),E(t), I (t),H (t) andR(t) are the number of suscep-
tible, exposed, infected, hospitalized and removed individu-
als, respectively, satisfying S(t)+E(t)+ I (t)+H (t)+R(t) =
N (t) for all t ∈ [t0,∞).
The infectionmechanism of this SEIHRmodel is described

by Fig. 1. In the new model, a susceptible (S) individual will
contact with an average of k individuals per day, with an expo-
nentially distributed interval between contacts (i.e. a Poisson
process). For each contact with an exposed (E) or infected (I)
individual, a susceptible individual will contract the disease
with probability ε or α, respectively, thus moving to the
exposed (E) compartment.

The exposed (E) compartment is composed of peo-
ple do not exhibiting any symptoms, among which some
(with probability δE

δE+β
) will remain undetected until their

own self-recovery or death, thereby entering the removed
(R) compartment. It is assumed that recovered proportions
acquire permanent immunity from reinfection. The remaining
proportions in the E compartment will become symptomatic
after an exponentially distributed latent period with mean
1/β, thus entering the infected (I) compartment.
Regarding the remaining compartments, infected (I) peo-

ple will recover or die before being detected with probability
δI

δI+γ
, while the remainder will be hospitalized after they are

identified, thus entering the hospitalized (H) compartment.
It is assumed that the people in the H compartment are not
contagious due to strict quarantine measures. Finally, people
in the H compartment will recover or die and thus move to the
removed (R) compartment after an exponentially distributed
hospitalization period with mean 1/δR.
Regarding human migration in the proposed model, only

people in the S, E, and R compartments may move freely
into or out of the system. The immigration and emigration
rates of people into and out of the R compartment are assumed
to be equal, such that the population of the R compartment
depends on intake from the other four compartments only.

Assuming that a state change does not occur first, people in
one of these compartments (S and E) will leave the population
at a rate of1out. Meanwhile, for people in the S or E compart-
ment, new people will enter that compartment from outside
the system at a rate of 1in. In other words, the migration
rate into and out of each compartment is proportional to the
size of that compartment. On the other hand, the H com-
partment does not allow immigration or emigration. Finally,
the I compartment allows both immigration and emigration;
however, all migrants into or out of the I compartment are
immediately detected and transferred to the H compartment,
i.e. ‘‘emigrants’’ from the I compartment are not actually
allowed to leave the community.

A. BASIC REPRODUCTION NUMBER
It is important to determine the basic reproduction number,
denoted R0, of the disease propagation process. To do so,
define X = (S,E, I ,H ,R). Assume that there is a dis-
ease free equilibrium (DFE), namely E0

= (S, 0, 0, 0, 0),
in system (1a–1e). We begin by deriving the next-generation
matrix [12] of our proposed system (1a–1e). First, we define
the matrices F , denoting the rate of new individuals into the
infectious E and I compartments, and V , denoting the rate of
transfer of individuals from the E and I compartments to the
non-infectious H and R compartments. Matrices F and V can
be written respectively as

F =
[
kε +1in kα

0 0

]
V =

[
β + δE +1out 0

−β γ + δI +1out

]
.

The next-generation matrix of the system is defined as
FV−1:

FV−1

=

[
kε +1in kα

0 0

]

�


1

β + δE +1out
0

β

(β + δE +1out)(γ + δI +1out)
1

γ + δI +1out



=


kε +1in

β + δE +1out

+
kαβ

(β + δE +1out)(γ + δI +1out)

kα
γ + δI + δout

0 0

 .
According to [12], the basic reproduction number R0 is the

largest eigenvalue or spectral radius of the next-generation
matrix. Since the eigenvalues of a triangular matrix are the
elements of its main diagonal,

R0 = ρ(FV−1)

=
kε +1in

β + δE +1out
+

kαβ
(β + δE +1out)(γ + δI +1out)

.

(2)
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FIGURE 2. Contour graph of R0 with respect to different parameters, where β = 0.14, γ = 1,
δE = δI = δH = 0.1. Colors represent the values of R0. Black solid lines represent contour lines of R0.

The first term in R0 is the number of people who are infected
by other exposed people during one infection cycle, and
the second term is the number of people who are infected by
other infected people. When R0 > 1, the disease outbreak
will be sustained; when R0 < 1, the disease will die out.

B. ACCOUNTING FOR EXTERNAL EPIDEMIC STRENGTH
According to Fig. 1, when modeling migration, the strength
of the epidemic in the external population is assumed to be
equal to the strength of the epidemic in the local population.
However, in many situations, this is not the case; for example,
during the initial stages of the COVID-19 pandemic, the
number of infected individuals in Wuhan was much higher
than in the rest of the world. Therefore, we introduce a scaling
factor of q ≥ 0 to denote the external epidemic strength,
which represents the ratio of the percentage of individuals in
the external regions that are exposed or infected compared to
the local region. Then, system (1a–1e) can be written as

dS(t)
dt
=

[
−εk

E(t)
N (t)
− αk

I (t)
N (t)

]
S(t)

+

[(
1−

(q− 1)(E(t)+ I (t))
S(t)

)
1in −1out

]
S(t),

(3a)
dE(t)
dt
=

[
εk
E(t)
N (t)
+ αk

I (t)
N (t)

]
S(t)

+ [−β − δE + q1in −1out]E(t), (3b)

dI (t)
dt
= βE(t)+ [−γ − δI −1out] I (t), (3c)

dH (t)
dt
= [γ + q1in +1out] I (t)− δHH (t), (3d)

dR(t)
dt
= δEE(t)+ δI I (t)+ δHH (t). (3e)

Similarly to Sec. 2.1, the basic reproduction number R0 of
system (3a–3e) is derived as

R0 =
kε + q1in

β + δE +1out
+

kαβ
(β + δE +1out)(γ + δI +1out)

.

(4)

If q > 1, it means the global pandemic is more severe
than the local epidemic. When q = 1, the global pandemic
has the same infection level as the local epidemic. While for
q < 1, the local epidemic is more severe than in other regions.
Note that for systems without immigration, i.e. 1in = 0, the
evolution of the system is independent of q and one can assign
the value of q = 1 for model fitting purposes.

C. SENSITIVITY OF R0 TO THE MODEL PARAMETERS
In carrying out simulations, some basic assumptions are
made. The latent period is set as 7 days (β = 0.14), the hos-
pitalization rate γ is set as 1, and the recovery rate is set as
δE = δI = δH = 0.1.
Figure 2 shows how R0 changes according to changes

in the various model parameters. Figure 2a shows that the
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transmission rate of exposed individuals, ε, has a major influ-
ence on R0, compared with the transmission rate of infected
individuals, α. The reason why this happens is because the
hospitalization rate γ is very high, meaning each infected
individual does not havemuch time to infect others. Figure 2b
shows that social distancing (when k is small) can effectively
reduce R0 for highly contagious strains (when ε = α is large).
From Fig. 2c, without border control, when the transmission
rate is low enough, the epidemic will not emerge even the
scale of the external epidemic is larger than the local one.
According to Fig. 2d, border control (when 1 is small) may
make the local epidemic be even worse when the scale of the
external epidemic (q < 2) is not very large. Essentially, this
is because a high liquidity of people can dilute the density of
the exposed and infected individuals.

There are other ways to reduce R0, such as finding a
method to lower the transmission rate or increasing the recov-
ery rate of the infected individuals. Due to the assumption
that hospitalized individuals will not be contagious, the rate
R0 is not affected by the hospitalized individuals. However,
the recovery rate of hospitalized individuals are influenced
by the occupancy of medical facilities. If the recovery rate
is too low, it will increase hospital occupancy and ultimately
overflow the hospitals. Therefore, it is crucial to expand the
capacity of the hospitals during the pandemic.

III. SIMULATION RESULTS AND DISCUSSIONS
A. NUMERICAL SIMULATION
In order to study the spreading process of COVID-19, we gen-
erated a regular network of size N = 106. By using the
Runge-Kutta method, we simulated varies scenarios of the
epidemic process. Initially, we set S(0) = 106− 1, E(0) = 1,
I (0) = 0, H (0) = 0, and R(0) = 0.

First, we investigated the impact of the transmission rate ε
and parameter α. As shown by Fig. 3, for a large transmission
rate, the peak of the epidemic comes very early, while for a
smaller transmission rate the peak will be postponed. One
can also see that, when the transmission rate ε is small,
the size of the epidemic is much smaller compared with the
results shown in Figs. 3b and 3c. Furthermore, given a fixed
transmission rate ε, the evolution of the epidemic is nearly
insensitive to changes in α. This is consistent with the results
shown in Fig. 2a. In other words, the epidemic process ismore
sensitive to the transmission rate of exposed people, ε.
The influence of the patients onmedical facilities is studied

by changing the rate γ of infected people being hospitalized.
Figure 4 shows the number of people being hospitalized to
evolve over time under different hospitalization rates. The
peak Hmax of H (t) and the time when it arrives are related
with γ . When any of these peaks is larger than the local
medical facility capacity, the hospitals will be overwhelmed.
It can also be seen that the peaks of H (t) have a maximum
value.

Next, we simulated the epidemic process under two differ-
ent border control policies, where1in = 1out = 0 represents
total lock down and 1in = 1out = 0.1 represents normal

FIGURE 3. Evolution of the SEIHR model, with q = 1, k = 1, β = 0.14,
γ = 1, δE = δI = δH = 0.1 and 1in = 1out = 0.1. The black solid line, red
solid line and blue solid line represent H(t), E(t) + I(t) + H(t), and
cumulative cases, respectively.

FIGURE 4. Evolution of the SEIHR model, with k = 1, ε = 0.25, α = 0.5,
β = 0.14, δE = δI = δH = 0.1 and 1in = 1out = 0. The colored solid lines
represent H(t) for different values of γ .

operation. Figure 5 shows that the policy is continuously
implemented from day one to the day epidemic ends. It can
be seen that the spreading speed of the disease under both
conditions are almost the same. This result can also be derived

195508 VOLUME 8, 2020



R. Niu et al.: Modeling the COVID-19 Pandemic Using an SEIHR Model With Human Migration

FIGURE 5. Evolution of the SEIHR model, where q = 1, k = 1, β = 0.14,
γ = 1, δE = δI = δH = 0.1. The black solid line, red solid line and blue
solid line represent the cumulative number of cases for different
transmission rates.

from Fig. 2c, since their R0 values are very close to each
other. However, the final numbers of these cases are smaller
when the border is totally closed. This is because the infected
individuals from outside are also counted when the border
remains open.

Finally, we investigated what kinds of intervention mea-
sures wouldwork for epidemic control. To do so, we first need
to quantify the intervention measures. As in Fig. 5, we con-
sider two possible states for border control, i.e. totally closed
(1 = 1in = 1out = 0) and remaining open (1 = 1in =

1out = 0.1). Furthermore, we introduce a scaling factor of
p to denote the strength of various interventions, including
social distancing, environmental disinfection, wearingmasks,
and so on, to control the disease. An intervention strength of
0 ≤ p ≤ 1 means that the transmission rates of exposed and
infected persons are both scaled by a factor of p, becoming pε
and pα, respectively. The updated dynamical process between
compartments can be seen in Fig. 6. A p value of one denotes
no intervention, whereas a p value of zero denotes a complete
cessation of local transmission. Thus, we can further obtain
the effective reproduction number as

Re=
pkε + q1in

β + δE +1out
+

pkαβ
(β+δE+1out)(γ+δI+1out)

.

(5)

Equation (5) shows a way to fit the epidemic process to
empirical data by tuning parameters p and q.
One can see a threshold for the intervention strength from

Fig. 7. For each value of 1 and q, there exists a critical

value pc such that when p > pc, the scale of the epidemic
increases rapidly, while for p < pc, the outbreak is totally
suppressed. This is simply because when p = pc, the effective
reproduction number equals 1.

Furthermore, when q = 1, which means the local pan-
demic is equivalent in strength to the global one, the critical
value pc is similar for both the open-border and closed-border
cases. On the other hand, when q < 1, i.e. the local pandemic
is more severe than the global one, the critical value pc is
larger than in the closed-border case, meaning that in terms of
controlling the local epidemic, less severe interventions are
required when the borders remain open. On the other hand,
maintaining open borders when q < 1 comes at the cost of
worsening the global pandemic due to exported cases.

B. REAL-DATA ANALYSIS
We used the proposed SEIHRmodel to fit the real COVID-19
data chosen from five representative regions, i.e., Italy,
Germany, Florida, New York and Hong Kong, to validate the
proposed model. Note that all the cases calculated here are
from compartment H, as lots of patients with mild symptoms
or without any symptoms could be self-cured before they are
detected. Therefore, the sizes of compartments E and I are
unobservable.

First, we fix the values of some of the parameters in our
models: N is the local population of each region, β = 0.14,
γ = 1, δE = δI = δH = 0.1, and 1in = 1out = 0.
For the remaining parameters, the fitted values for each each
region are given in Appendix B. Note that, for Italy, Germany,
Florida, New York, and the third wave of the COVID-19 epi-
demic in Hong Kong, the migration rates of these regions are
considered to be negligible compared with their populations.
However, migration is taken into account for the second wave
of the COVID-19 epidemic in Hong Kong, where the effect
of migration is prominent.

Second, at the beginning of an outbreak, the epidemic
process will evolve naturally with no additional interventions
initially. From natural growth data, two basic transmission
rates are obtained: ε and α. After that, when intervention
measures are implemented, an index p is introduced, which
is multiplied by R0 to get the effective reproduction number
of the system, Re. When p = 1, it means that there is no
intervention involved. The smaller the p is, the higher the
intervention strength is. Reasonably, the p values are different
for different intervention stages.

1) HONG KONG
When the global pandemic situation is much worse than the
local situation and yet the border remains open, the number
of imported cases becomes significant, as in the second wave
of COVID-19 outbreak in Hong Kong. Figure 8 shows that
the migration part of our model can adequately estimate
the number of imported cases. The blue line represents the
SEIHR model when migration is removed, which fits the
observed number of local cases quite well. The green line
is the simulation of the SEIHR model with migrations (the
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FIGURE 6. Inter-compartmental dynamics of the SEIHR model when parameters p and q are introduced.

FIGURE 7. Relationship between the final number of cumulative case and
p, where k = 1, β = 0.14, γ = 1, δE = δI = δH = 0.1, ε = 0.25, and α = 0.5.
The red solid line represent the final number of cumulative cases for
different levels of intervention with or without closing the border.

FIGURE 8. The SEIHR model fits with the second wave of
COVID-19 outbreak in Hong Kong. The colored solid lines and dots
represent simulation results and real data, respectively.

migration data is shown in Fig. 13), which fits the observed
number of total cases very well.

However, for the third wave of COVID-19 outbreak in
Hong Kong, the situation is slightly different. The number
of imported cases was minimal due to strict border control.
On the other hand, the number of local cases increased rapidly
because of loosening interventions. In Fig. 9, we success-
fully predict the trend of the third wave of COVID-19 in
Hong Kong using the SEIHR model without migrations. The
parameter choices for both waves are shown in Table 5.

2) OTHER REGIONS
Figure 10 shows the COVID-19 data in four regions and
the corresponding SEIHR simulation results. As shown
in Fig. 10, the SEIHR model fits well with the real data. For

FIGURE 9. The SEIHR model prediction for the third wave of
COVID-19 outbreak in Hong Kong. The colored solid lines and dots
represent simulation results and real data, respectively.

comparison, we also show the fitting results of SIR and SEIR
models. The results demonstrate that our modified SEIHR
model is much more accurate than the SIR and SEIR models.

For Italy, we assume that the intervention period has only
one stage which lasts to the end of the pandemic. In reality,
different interventions were implemented in different stages.
Therefore, the fitted curve for the SEIHRmodel deviates from
the real data.

For Germany and Florida, we assume two stages of inter-
vention, with overall intervention strengths of p1 and p2,
respectively. Additionally, p1 < p2, i.e. in the second stage,
certain interventions were relaxed. It can be seen that once
the intervention measures were loosened, the infection rates
in both regions increased immediately. This is because, Re
will grow when intervention measures are reduced.

Note that for Italy, Germany, and Florida, the number and
timing of each intervention period in our modified SEIHR
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FIGURE 10. The SEIHR, SIR, SEIR model fits with the COVID-19 data in four different regions. The solid
lines and the red dots represent simulation results and real data, respectively.

models were estimated. For New York, to make the fit
more reasonable, we consider the actual dates when certain
intervention policies were implemented. We selected four
intervention policies that might have large impacts on the
pandemic, and divided the intervention period into four stages
accordingly, with intervention strengths of p1, p2, p3 and p4,
respectively. For the first three stages, each stage is more
strict than the previous stage. In contrast, the fourth stage cor-
responds to a loosening of intervention policies. Therefore,
p1 < p2 < p4 < p3. Figure 10d shows that the model fits the
real data quite well.

3) DISCUSSION
As can be seen from the results, our modified SEIHR model
achieves greater fitting accuracy compared with the SIR and
SEIR models. This suggests that our choice of dynamical
interaction between compartments is better able to capture
hidden unidentified and even unidentifiable dynamics in
this extremely non-linear and time-varying complex envi-
ronment. Furthermore, by keeping all parameters except p
and q constant throughout the course of an epidemic, our
model requires fewer parameters, updated less frequently,
than many other epidemiological models, e.g. network-based
models. The simulation and data-based analysis results not
only validate the proposed modified SEIHR model but also
present a way to predict the future evolution of COVID-19 in
general.

According to our data analysis, we now know that the inter-
vention measures are effective and that reopening a region
too early may cause a second wave of outbreak. Therefore,

intervention measures must be strictly and continuously
enforced and implemented.

IV. LIMITATIONS OF THE STUDY
First, this study is built on an assumption that the human
population is mixed homogeneously. However, in reality,
the population distributions are mostly heterogeneous. The
heterogeneity of the social contact network sometimes causes
the emergence of super-spreaders, which play an important
role in the epidemic process.

Second, the model we used is a deterministic approach for
modeling the COVID-19 pandemic. As shown in the real data,
there are some stochastic phenomena during the pandemic.
Therefore, our deterministic approach cannot fully model
the daily number of cases of an epidemic, as demonstrated
in Fig. 10b. Nevertheless, numerical results show that our
deterministic approach is still able to provide an accurate
estimate of the total number of cumulative cases in a region.

In summary, while our model is much simpler than other
models (deterministic with only five compartments), and
does not model certain known phenomena such as hetero-
geneity or the stochastic nature of disease transmission, it can
still obtain relatively accurate predictions for the COVID-19
pandemic.

V. CONCLUDING REMARKS
In this article, we presented a deterministic framework
referred to as the SEIHR compartmental model. Using
the next-generation matrix method, we derived an explicit
expression of the basic reproduction number R0. After
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FIGURE 11. Relationship between Hmax and γ , where k = 1, ε = 0.25,
α = 0.5, β = 0.14, δE = δI = δH = 0.1 and 1in = 1out = 0. The black
squares represent Hmax for different values of γ .

FIGURE 12. Contour graph of the critical value γc with respect to ε and α,
where k = 1, β = 0.14, δE = δI = δH = 0.1 and 1in = 1out = 0. The
contour graph represents different values of γc .

analyzing the relationship between R0 and the model param-
eters, we obtained some parameter regions that allow to
control the epidemic outbreak. We also found that, when the
local pandemic is more severe than the global one, allowing
people to move freely into or out of the system can actually
reduce the speed of epidemic, at the price that it will export
diseases to other areas. Then, we performed several simula-
tions, showing that the epidemic process is more sensitive to
the transmission rate of the exposed people than that of the
infected people, due to a strict isolation policy for infected
people who exhibit symptoms. Furthermore, we investigated
how the isolation policy impacts the medical facilities and
found a possible parameter region to lower the risk of hospital
overflow. To that end, we used an intervention index to quan-
tify the strengths of some measures implemented for local
epidemic prevention. Our results show that, when the local
epidemic is more severe than other regions, hard intervention
measures for epidemic control could be more effective than
blindly closing the borders. In addition, by using a set of real
historical COVID-19 data, we validated the model and found
that reopening a region too early may cause anther wave of
pandemic.

Finally, we verified that our model can estimate the evolu-
tion of local epidemics (with or without migration) by fitting
the real data of the second and third waves of COVID-19
outbreak in Hong Kong, as well as COVID-19 outbreks in
four other global regions. These numerical results for mul-
tiple global regions demonstrate that our proposed modified
SEIHR model is more accurate and robust than the SIR and

FIGURE 13. Evolution of the SEIHR model when intervention measures
are involved, where q = 1, k = 1, β = 0.14, γ = 1, δE = δI = δH = 0.1,
ε = 0.25, and α = 0.5. The black solid line, red solid line, blue solid line
and pink solid line represent the cumulative number of cases for different
levels of intervention without closing the border. The green solid line
represents the cumulative number of cases without intervention, but with
border closed.

FIGURE 14. The migration data of Hong Kong during the second wave of
the COVID-19 pandemic.

SEIRmodels for estimating COVID-19 caseloads. In particu-
lar, our model can accurately model the number of both local
and imported cases during the second wave of COVID-19 in
Hong Kong, using a single parameter to model the relative
strength of the COVID-19 pandemic outside of Hong Kong.

APPENDIX A
ADDITIONAL FIGURES
Figure 11 shows the relationship between Hmax and γ . Note
that there is a critical value γc that allows Hmax to take the
maximum value. When γ < γc and γ → 0, the peak
Hmax will be reduced. But, according to the expression of
R0, the rate R0 will increase thereby causing more infections
when γ is reduced. When γ > γc and γ → 1, meaning
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TABLE 2. Parameter settings for the SEIHR model.

TABLE 3. Parameter settings for the SEIR model.

TABLE 4. Parameter settings for the SIR model.

TABLE 5. Parameter settings for Hong Kong. For the third COVID-19 wave
in Hong Kong, we estimated the parameters using data up to (1) July 24,
(2) August 2, and (3) August 23.

strict isolation policies are implemented, the peak Hmax will
decrease. At this time, the scale of the epidemic will also be
reduced.

Figure 12 shows how the critical value γc is changed with
ε and α. As shown in the figure, the contour graph is divided
into three regions. In region I, γc = 1, which means that when
γ → 1 the peak Hmax of H (t) will increase. However, due to
small values of ε and α, the value of the peak Hmax is small.
In region II, γc = 1 is also reached. Under this circumstance,
the peak Hmax of H (t) will increase and its value is much
higher due to the large values of ε and α. In region III, because
γc < 1, when γ → 1 the peakHmax ofH (t) decreases, which
further lowers the risk of hospital overflow.

Figure 13 shows the evolution of the SEIHR model when
intervention measures are involved. The intervention is taken
when the number of cumulative cases exceeds 100.

Figure 14 shows the migration data of Hong Kong between
February 28th to April 30th.

APPENDIX B
FITTED PARAMETER VALUES FOR THE FIVE
GLOBAL REGIONS
Tables 2–5 contain the fitted parameter values for the
five global regions analyzed in Section III-B, namely
Italy, Germany, Florida, New York, and Hong Kong. For
Hong Kong, three different predictions are given for the third
wave of the COVID-19 epidemic, using data up to July 24,
Aug 2, and Aug 23, respectively.
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