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a b s t r a c t

We consider a model of overflow loss systems in which server groups are arranged into
layers, and alternate routing within each layer creates mutual overflow effects, increasing
the amount of traffic that can be carried by the system. Such amodel has wide applications
in communications and service systems. However, the presence of both hierarchical
inter-layer overflow and mutual intra-layer overflow makes accurate, robust, yet scalable
blocking probability evaluation of such systems a difficult challenge. To address this
challenge, we apply and extend the recently developed Information Exchange Surrogate
Approximation (IESA) framework to a multi-layer system, adding new surrogate models
to the framework and incorporating moment-matching techniques. In contrast to the
conventional fixed-point approximation (FPA) approach, which directly decomposes the
overflow loss system into independent subsystemswith inherent problems of convergence
and uniqueness, IESA performs decomposition on a carefully designed surrogate model
with guaranteed convergence and uniqueness. Extensive numerical results demonstrate
that IESA is consistently more accurate than the conventional FPA approach, showing an
improvement in accuracy of several orders of magnitude in many cases. Furthermore,
the new extensions to IESA introduced in this paper provide consistent improvements in
accuracy relative to the current state-of-the-art of the IESA framework.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Overflow loss systems are characterized by one or more classes of requests served by a system comprised of multiple
server groups, with requests from each class following a prescribed overflow policy in seeking an available server [1–4].
They arise naturally in a variety of communications and services systems, for example wireless and cellular networks [5–7],
video-on-demand systems [8–10], emergency vehicular dispatch [11–15], and intensive care units [16–18]. Unfortunately,
even the simplest overflow loss systems often have no simple analytic expression for the blocking probability of requests [4],
since the stationary distribution of an overflow loss system is not of product form. The challenge in practice is thus to find
accurate, robust, yet computationally efficient approximation methods.

In particular, many applications of overflow loss systems naturally give rise to multi-layer architectures, yet also allow
non-hierarchical intra-layer overflowwithin each layer. Such a design ismotivated by twoprinciples. Firstly, it iswell known
that in overflow loss systems, it is generally preferable for requests to attempt servers with smaller skill sets before those
with larger skill sets (in terms of the number of request types able to be handled by each server) [19]. Secondly, system

∗ Corresponding author.
E-mail addresses: ycchan26-c@my.cityu.edu.hk (Y.-C. Chan), j.guo@cityu.edu.hk (J. Guo), eeewong@cityu.edu.hk (E.W.M. Wong), m.zu@cityu.edu.hk

(M. Zukerman).

http://dx.doi.org/10.1016/j.peva.2016.06.007
0166-5316/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.peva.2016.06.007
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2016.06.007&domain=pdf
mailto:ycchan26-c@my.cityu.edu.hk
mailto:j.guo@cityu.edu.hk
mailto:eeewong@cityu.edu.hk
mailto:m.zu@cityu.edu.hk
http://dx.doi.org/10.1016/j.peva.2016.06.007


2 Y.-C. Chan et al. / Performance Evaluation 104 (2016) 1–22

efficiency can generally be improved by arranging server groups to form what is known as a closed chain [20]. Such closed
chains allow temporary overcapacity in any part of the chain to be transferred to handle any temporary capacity shortages in
any other part of the chain. Closed chains thus improve the efficiency of each system layer by enhancing the mutual sharing
effect between server groups and are closely related to the concept of ‘‘entraide’’ or mutual aid in telephone switching
systems [21,22].

The presence of closed chains leads to a phenomenon known as mutual overflow [23–25], where congestion on a
specific server causes overflow to the other servers, which in turn become congested and yield overflow to the original
server. While the classical Fixed Point Approximation (FPA) [26,27] is generally sufficient for approximating blocking in
pure hierarchical systems, especially when enhanced with moment-matching techniques [28,26,29–31], such methods are
generally inadequate when mutual overflow is present [32]. This is because FPA does not capture the mutual dependencies
between server groups.

1.1. Addressing mutual overflow

To address mutual overflow in overflow loss systems, the recently developed Information Exchange Surrogate
Approximation (IESA) framework [33,7,34] was proposed. IESA is based on applying the underlying methodology of FPA,
namely decoupling of a system into multiple independent queues with Poisson input, to a surrogate model of the system
that preserves some of the dependency information between server groupswhen decoupling is applied. As a result, IESA has
been shown to providemore accurate and robust results compared to FPA for a number of cases [33]. In fact, IESA appears to
be the first approximation framework which accurately handles mutual overflow in a heterogeneous system environment,
thus addressing a well-known historical problem [35]. In addition, because the surrogate model creates a pure hierarchical
traffic structurewithin each layer of the overflow loss system, IESA as applied in this paper does not require the use of fixed-
point iteration (unlike FPA when mutual overflow is present), and therefore can be completed in a finite number of steps
with guaranteed convergence to a unique solution.

The advantage of IESA over simulation is that IESA provides new insight into and better understanding of the nature of
overflow loss systems, with particular focus on the mutual dependency effects between server groups in the same system
layer (which are ignored in FPA). In addition, IESA allows fast evaluation of a large number of system configurations, allowing
for the optimization of resource allocation in overflow loss systems, including improvements in system design.

1.2. Contributions of this paper

The main contribution of this paper is the extension of the IESA framework to a multi-layer overflow loss system model
with intra-layer overflow.We shall use the term ‘‘IESA’’ to refer both to the IESA framework as a whole and to its application
in this paper to a multi-layer model. Extensive numerical results demonstrate consistently better accuracy of IESA over FPA,
with several orders of magnitude of improvement in many cases.

In addition,we also propose improvements to IESA for capturing the intra-layer dependencies in the overflow loss system.
As our new surrogatemodel is closely related to the previous surrogatemodel, we shall label the resulting approximation as
IESA+. Although the congestion estimates are defined in the same way in both the original and new IESA surrogate models,
the way the surrogate model uses these estimates is slightly different. While this paper focuses on the application of IESA to
multi-layer overflow loss systems, this improved version of IESA, i.e. IESA+, is equally as applicable to single-layer systems.
We shall use the term ‘‘true model’’ to refer to our original overflow loss system model as defined in Section 3, and ‘‘IESA
surrogate model’’ and ‘‘IESA+ surrogate model’’ (IESA model and IESA+ model for brevity) to refer to the surrogate models
for the IESA and IESA+ approximations, respectively.

Finally, we applymomentmatching to FPA, IESA, and IESA+. Themoment-matched versions of these approximations are
denoted FPAm, IESAm, and IESAm+, respectively. IESAm+ is demonstrated via extensive numerical results to be the most
accurate and robust approximation out of all those considered in this paper.

1.3. Applications of multi-layer systems

The multi-layer model in this paper has many applications. One example is cellular networks [36,37,7], where cells can
be classified into layers based on coverage area, for example, as macro-cells and micro-cells. The cellular network model is
similar to the one studied in this paper, but adds the concepts of call mobility (i.e. handoff of calls between cells) and locality
(overflow and handoffs can only occur between adjacent or overlapping cells). Extensions to IESA regarding these two issues
were presented in [7], but for a single-layer system only.

Another example is that of content distribution networks (CDNs). For example, the single-layer version [33] of themodel
considered in this paper is motivated by CDNs for video-on-demand [9]. In a multi-layered CDN design, servers would be
divided into origin servers and edge servers, with possible additional layers in between. This allows most popular content
in the network to be shifted as close to the end users as possible. In addition, the edge layer of a CDN network may also
incorporate peer-to-peer elements [38,10]. As a real-life example of the benefits of multi-layered CDNs, Facebook’s cold
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storage data centers are roughly six times more energy efficient than its regular data centers [39]. The model in [34], to
which IESA is applied, is motivated by P2P networks for video-on-demand systems, but is restricted to a single layer.

The multi-layer model can also be applied to Infrastructure as a Service in cloud computing platforms. For example,
AmazonWeb Services subdivides each of its regions into multiple availability zones, each containing multiple data centers.
If a user does not select an availability zone when deploying a virtual machine (VM), Amazon may deploy the VM at any
data center in the region. Alternatively, a user may choose to launch a new compute instance in a specific availability zone
based on the location of existing storage instances.

Multi-layered models also arise naturally in call centers [30,40], where cross-training costs give rise to differentiation
among call center agents. Whereas Franx et al. [30] only considered purely hierarchical call center architectures, the ability
of IESA to accurately model mutual overflow within each call center layer allows us to more fully utilize each layer of the
call center. Although delay forms a major aspect of call centers in reality, Chevalier and Van den Schrieck [41,40] argue that
results obtained with a loss model can be a good proxy for models with waiting.

Finally, layered architectures can be found in hospital management systems. For example, the Hong Kong Hospital
Authority currentlymanages (as of June 2016) 41 public hospitals organized into seven clusters [42].While it is preferable to
serve each patient in his or her preferred cluster, patients may also be referred between clusters for load-balancing reasons
or if specialist services are required.

1.4. Organization

The rest of this paper is organized as follows. In Section 2, we discuss existing relatedwork inmore detail. In Section 3, we
describe themodel ofmulti-layer overflow loss systems considered in this paper. Section 4 illustrates the benefits of layering
and mutual overflow that motivate our chosen model. Section 5 gives details of how we apply FPA, IESA, and IESA+ to our
chosen model, as well as the corresponding moment-matched versions of these three approximations. The performance of
each approximation is compared numerically in Section 6. In Section 6.10, we demonstrate near insensitivity of the blocking
probability to the service time distribution, allowing our IESA framework to be applied to a wide range of systems. Finally,
concluding remarks are made in Section 7.

2. Further related work

2.1. Related system models

2.1.1. Gradings
Gradings [43,35,44] form themost classical application of the overflow loss systemmodel. It has been known for almost a

century that arranging servers in a grading into a layered structure can increase the throughput of the grading. In particular, it
was suggested in [19] that the best grading is the one inwhich there is a smooth progression ‘‘from individuals to commons’’,
i.e. from servers with smaller skill sets to those with larger skill sets, if service time distributions are assumed to be identical
for all request–server combinations. Here, we demonstrate this effect on the throughput of a more general overflow loss
system model in which servers with the same skill set are combined into a server group.

The classic grading model [43,35,44,3] allows for arbitrary overflow policies exhibiting both inter-layer and intra-layer
overflow with no spatial considerations, and is the closest model to that we consider, but permits only one server per
group. Despite this restriction, accurate blocking probability evaluation remains an open problem for gradings whenmutual
overflow and unbalanced traffic are both present [35]. Although the exact blocking probability of an overflow loss system
can be obtained in principle, by solving the underlying set of steady-state equations [25], such an approach is not scalable
due to the curse of dimensionality: the number of dimensions of the state space is equal to the number of server groups in
the system.

2.1.2. Cellular networks
The cellular network model considered in [36] is close to that considered in this paper, featuring both inter-layer

and intra-layer overflow. However, their model is motivated by mobile cellular networks and contains strong spatial
considerations, whereas in this paper we allow arbitrarily predetermined overflow policies. We also ignore the concept
of handover, which is unique to wireless and cellular networks. An application of the IESA framework to cellular networks
is available in [7], but this does not consider inter-layer overflow. Another model, considered in [30,31], is also similar to
the one considered here, but does not allow intra-layer overflow.

2.1.3. Call centers
Avramidis et al. [45] consider a call center model with delay. As a further level of approximation, the pooling of queued

requests in a common buffer is replaced with a wait-at-last-choice policy in which each server group has is own buffer for
queued requests. The algorithm is used as a tool to facilitate optimization of call center staffing by reducing the amount of
simulation required, and a separate analysis of its accuracy as a stand-alone performance evaluation tool is not provided.
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Call centers have also been modeled in the literature using blocking models without waiting [46,40,47]. It is argued that
results obtainedwith a loss model can be a good proxy for models with waiting [41,40]. The call center model in [46] is close
to ours but does not include the concept of layering.

2.2. FPA

FPA is based on the decoupling of a given system into independent full-accessibility subsystems, for example
M/M/k/k [46], in which each request offered to the subsystem may attempt every server in the subsystem. In this way,
the computational time and memory requirement is greatly reduced compared to direct analysis of the entire system. Note
that adoption of the Poisson assumption is equivalent to introducing an exponentially distributed delay of arbitrary mean
for each overflow of a request [48, p. 157].

Such a direct decomposition approach, when applied to systems with mutual overflow, inherently gives rise to a set of
interdependent non-linear equations with one or more fixed points. Higher moments (such as the variance and skewness)
of overflow traffic can also be considered for obtaining more accurate approximations [49,30,37]; we shall use the term
FPAm to denote FPA with moment matching.

Unfortunately, while FPAm is effective inmodeling inter-layer overflow, it cannot capture themutual dependency effects
created by intra-layer overflow [32], resulting in large approximation errors inmany cases [32,33]. It is demonstrated in [32]
that for most systems with mutual overflow, the errors caused by the independence assumption in FPA dominate those
caused by the Poisson assumption, rendering FPAm inadequate for such systems. For a thorough discussion of non-Poisson
and dependence effects in overflow loss systems, see [50].

Whilemethods of countering the effect of FPA’s independence assumption appear in [11,12,51,13,14], inwhich correction
factors are incorporated into FPA, suchmethods are restricted to the case of full accessibility, meaning that each request may
attempt all of the servers in the system. An approximate method in [52,15] allows for both mutual overflow and limited
accessibility, but only for a specific overflow policy (requests may only attempt the closest two server groups in a ring).

Finally, although FPA is guaranteed to result in at least one fixed point [53], no guarantee of convergence or uniqueness
is known for FPA. Koole and Talim [46] prove convergence of FPA to a fixed point for a special case with two server groups,
but do not prove uniqueness of the solution.

2.3. IESA

The IESA frameworkwas established in [33,34,7] as amore accurate, robust and computationally efficient approximation
approach to blocking probability evaluation in overflow loss systems. The framework is based on developing a surrogate
model with a similar blocking probability to the true model and then, in a similar manner to FPA, decoupling the surrogate
model into independent subsystems with Poisson input in order to deal with the curse of dimensionality.

The IESA model is based on the application of an information exchange mechanism to capture the overflow traffic
dependence and hence reduce the errors caused by decoupling the surrogate model into independent subsystems with
Poisson input.

In IESA, each request holds a congestion estimate of the number of busy server groups in its current layer, based on
congestion information received by a request as it overflows from one server group to the next. This congestion information
is used to identify requests with a high probability of being overflowed from the current system layer. Such requests may
be preemptively promoted to the next system layer without attempting the remaining server groups in the current layer, or
blocked if there are no more layers.

A request seeking service exchanges its congestion estimate with a request in service if and only if the request in service
has a higher congestion estimate. In other words, information exchange can only increase but not decrease the congestion
estimate of a request seeking service. IESA thus replaces the non-hierarchical traffic structurewithin each layer of the original
overflow loss system with a hierarchical traffic structure based on this congestion estimate. Due to this hierarchical traffic
structure, IESA yields a solution with guaranteed convergence and uniqueness within a finite number of iterations, whereas
FPA requires a fixed-point solution. For the sake of clarity, we will use the term level to describe the IESA sub-hierarchy
within each layer of the IESA model.

The concept of IESA is depicted in Fig. 1, showing the two main features of the IESA model: a similar but slightly higher
blocking probability than the truemodel, and a reduction in error when decoupling is applied to the surrogate model. These
two features combined result in amore accurate and robust blocking probability approximation for the truemodel than FPA
applied directly to the true model. Intuition supporting these two features is presented at the end of this subsection.

Two IESA approximations are presented in [33] for overflow loss systems, denoted as IESA1 and IESA2. IESA1 is
numerically equivalent to an earlier approximation, the Overflow Priority Classification Approximation (OPCA) [32], but
replaces the preemptive priority mechanism of OPCA with an equivalent information exchange mechanism. IESA2, which
uses a new surrogate model, is generally more accurate and robust than IESA1 [33]. As an extension of IESA1, IESA2 is
equivalent to IESA1 in the case where each request has full access to each server in the system [54]. We shall use ‘‘IESA’’
from now on to refer specifically to IESA2 as appropriate.

More details of the IESA model are provided in Section 5.3.
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Fig. 1. Graphical depiction of the IESA framework.

2.3.1. Intuition supporting Fig. 1
Overflowing requests in the IESA model are preemptively promoted to the next system layer with a certain probability

dependent on the system congestion estimate for the current layer, as provided by the information exchange mechanism
(to be described in detail in Section 5.3). These preempted requests thus do not attempt all accessible server groups in the
current system layer. As there is a non-zero probability that one of the skipped-over server groups could have served the
preempted request, the blocking probability of the IESA model is slightly higher than that of the true model, i.e. ③ ≥ ①. On
the other hand, the preempted requests are carefully chosen so that this probability is relatively low; i.e. preempted requests
have a high probability of being overflowed from the layer anyway if allowed to attempt the remaining server groups in that
layer. Therefore, we argue that the inequality is generally quite tight and ③ ≈ ①. Equality is achieved when the true model
itself is purely hierarchical and there is no intra-layer overflow.

Furthermore, preemptive promotion of requests in IESA increases the proportion of the total traffic offered to a server
group formed by fresh requests, whereas the proportion formed by overflowed requests is decreased (a proof of this was
provided in [32, Cor. 1] for a special case). This reapportionment of the traffic offered to a server is effective in combating the
errors caused by the Poisson and independence assumptions, as fresh requests to each layer have the least non-Poisson and
dependency effects. In this sense, the gap between the IESA estimate and the exact blocking probability of the IESA model
is narrower than that between the FPA estimate and the exact blocking probability of the true model, i.e. |③–④| ≤ |①–②|. In
addition, the gap ③–④ is somewhat offset by the positive difference of ③ over ①. Therefore, IESA produces results closer to
the real blocking probabilities than those by direct application of FPA, i.e. |①–④| ≤ |①–②|.

Proven theoretical bounds for IESA have been shown for a special case of overflow loss systems [32,48] in which each
request may attempt all servers in a system in fully random order. In particular, IESA1 was shown for this case to always lie
between FPA and the true blocking probability. IESA in this paper, equivalent to IESA2 in [33], can be shown to be equivalent
to IESA1 in this special case [54]. In addition, in the case of critical loadingwhere the total offered load in Erlangs is equivalent
to the total number of servers, the ratio Bexact/BIESA between IESA and the exact blocking probability is bounded above by
√
2, whereas Bexact/BFPA tends to infinity as the system size increases [48].

3. Loss systemmodel

Let L denote the number of layers in the overflow loss system and L = {1, 2, . . . , L} denote the set of layers. Each layer
ℓ ∈ L contains a set Gℓ = {(ℓ, 1) , (ℓ, 2) , . . . , (ℓ,Gℓ)} of server groups. Each server group (ℓ, g) consists of Nℓ,g servers, thus
forming an M/M/Nℓ,g/Nℓ,g queue. Let M = {1, 2, . . . ,M} denote the set of request types. Type-m requests, m ∈ M, arrive to
the system according to a Poisson process with rate λm.

Typical values ofM range from 3 or 4 for an emergency care network [55,16], to several dozens for a large call center [45],
to several hundreds for video-on-demand networks [56,10]. In this paper, we generally use values of


ℓ Gℓ andM of around

100 and 500, respectively, consistent with Wong et al. [33].
Let


ℓ, γm,ℓ,n


∈ Gℓ denote the chosen server group for type-m requests in layer ℓ, having overflowed n times

so far in layer ℓ. Let km,ℓ denote the number of accessible server groups for type-m requests in layer ℓ, and 0m,ℓ =
ℓ, γm,ℓ,0


, . . . ,


ℓ, γm,ℓ,kℓ,s−1


denote the sequence of these server groups. Finally, let0m = 0m,1⊕0m,2⊕· · ·⊕0m,L denote

the entire sequence of server groups accessible to type-m requests, where ⊕ denotes concatenation. A type-m request will
attempt each server group in0m in order until an attempted server group has at least one free server, uponwhich the request
is then served by that server. If all server groups in 0m are fully occupied, the request is blocked and cleared. The probability
of such an event, known as the blocking probability, is an important performance measure of overflow loss systems.
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Table 1
Table of notations.

Symbol Definition

L Number of layers in the system
L Set of layers in the system
Gℓ Number of server groups in layer ℓ

Gℓ Set of server groups in layer ℓ

Nℓ,g Number of servers in server group (ℓ, g)
M Number of request types
M Set of request types
λm Arrival rate of type-m requests
ℓ, γm,ℓ,n


Server group in layer ℓ receiving type-m requests which have overflowed n times in layer ℓ

km,ℓ Number of server groups in layer ℓ accessible to type-m requests
0m,ℓ Set of server groups in layer ℓ accessible to type-m requests
0m Set of all server groups accessible to type-m requests
Am,ℓ Offered load of type-m requests to layer ℓ, in Erlangs
A′

m,ℓ Variance of offered load of type-m requests to layer ℓ

Wm,ℓ Mean overflow of type-m requests from layer ℓ, in Erlangs
W ′

m,ℓ Overflow variance of type-m requests from layer ℓ

All requests to the system are assumed to have an exponential service time distribution with unit mean. Numerical
experiments in Section 6.10 suggest that the effect of assuming an exponential service time distribution is small.

Let Am,ℓ denote the offered load in Erlangs composed of type-m requests to layer ℓ, andWm,ℓ denote the mean overflow
traffic of the type-m requests from layer ℓ. Thus

Am,ℓ =


λm, ℓ = 1
Wm,ℓ−1, ℓ = 2, 3, . . . , L.

The blocking probability of type-m requests is Bm = Wm,L/λm, and the overall system blocking probability is

B =


m∈M

Wm,L
m∈M

Am,1
.

The challenge of approximating Bm and B is thus reduced to that of approximatingWm,ℓ from Am,ℓ for each layer ℓ ∈ L.
If moment-matching techniques are used, then more notations are required. The corresponding variances of the offered

and overflow traffic for type-m requests in layer ℓ are denoted A′

m,ℓ andW ′

m,ℓ, respectively, where

A′

m,ℓ =


λm, ℓ = 1
W ′

m,ℓ−1, ℓ = 2, 3, . . . , L.

A summary of the notations described in this section is provided in Table 1.

3.1. Example

An example loss system is shown in Fig. 2. In this example, there are L = 3 layers, with G1 = 3, G2 = 4, and G3 = 1 server
groups in layers 1, 2, and 3, respectively. The number of request types is M = 4. The number Nℓ,g of servers in each server
group (ℓ, g) and the arrival rate λm of traffic for each request type m is given in Fig. 2. The overflow policy is as follows:
01,1 = ((1, 1)), 01,2 = ((2, 1) , (2, 2)), and 01,3 = ((3, 1)); thus 01 = ((1, 1) , (2, 1) , (2, 2) , (3, 1)). Similarly,

02 = ((1, 2) , (2, 2) , (2, 3) , (3, 1))
03 = ((1, 3) , (2, 3) , (2, 4) , (3, 1))
04 = ((2, 4) , (2, 1) , (3, 1)) .

From this we deduce k1,1 = 1, k1,2 = 2, k1,3 = 1, k2,1 = 1, etc. Note that k4,1 = 0 and 04,1 = () (a zero-length sequence). In
general, if km,ℓ = 0 for any layer ℓ ∈ L, or equivalently if 0m,ℓ = (), then type-m requests in layer ℓ simply bypass the layer
without seeking service in that layer, in which caseWm,ℓ = Am,ℓ and W ′

m,ℓ = A′

m,ℓ.

4. Motivations

This section explains the motivations behind our chosen overflow loss system model, which facilitates both intra-layer
mutual overflow and inter-layer hierarchical overflow.
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Fig. 2. Example of a three-layer overflow loss system.

Fig. 3. Graphical depiction of Configurations 0–5 in Section 4.1.

Table 2
Blocking probabilities for Section 4.1.

Config. Blocking prob. 95% C.I. Ratio to previous

0 0.018369 ±2.93 × 10−5 –
1 0.015329 ±3.66 × 10−5 1.198
2 0.011920 ±2.47 × 10−5 1.286
3 0.008442 ±4.36 × 10−5 1.412
4 0.004995 ±1.59 × 10−5 1.690
5 0.001054 ±4.05 × 10−6 4.740

4.1. Benefits of mutual overflow

Our loss systemmodel permits requests to attemptmultiple server groups in the same system layer in an arbitrary order.
This allows for the presence of mutual overflow within each system layer. To demonstrate the benefit of mutual overflow,
consider an overflow loss systemwithM = 5 request types and L = 1 layer containing G1 = 5 server groupswithN1,g = 10
servers each. The arrival rate for each request type is λm = 5 for all m ∈ M. The overflow policies are as follows, with each
subsequent configuration increasing


m km,1 by one:

• Configuration 0: 0m = ((1,m)) for m = 1, 2, 3, 4, 5.
• Configuration i, i = 1, 2, 3, 4, 5: 0m = ((1,m) , (1, (m mod 5) + 1)) for m = 1, . . . , i; 0m = ((1,m)) for m =

i + 1, . . . , 5.

This is depicted graphically in Fig. 3. Configuration 5 thus ‘‘completes the chain’’ [20] and introduces mutual overflow
into the system. The overall blocking probability of each scenario, as evaluated via simulation, is shown in Table 2, along
with the 95% confidence interval as obtained using Student’s t-distribution. The results demonstrate the benefits of allowing
mutual overflow, as Configuration 5 has a considerably lower blocking probability than any other configuration. Note that
while each configuration in Table 2 exhibits less blocking than the previous one, the improvement is limited compared to
Configuration 5 over Configuration 4, in which increasing


m km,1 by one suddenly results in over four times improvement.
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Table 3
Blocking probabilities for Section 4.2.

k̂ One layer Two layers Relative difference
Mean st. dev. Mean st. dev.

20 0.009970 3.35 × 10−5 0.009429 3.88 × 10−5
−5.42%

30 0.007810 3.02 × 10−5 0.007519 3.04 × 10−5
−3.72%

40 0.007024 2.31 × 10−5 0.006879 2.68 × 10−5
−2.07%

50 0.006643 3.03 × 10−5 0.006566 1.69 × 10−5
−1.16%

60 0.006439 2.42 × 10−5 0.006378 2.09 × 10−5
−0.96%

70 0.006309 2.06 × 10−5 0.006290 2.23 × 10−5
−0.30%

80 0.006230 2.36 × 10−5 0.006209 2.56 × 10−5
−0.35%

4.2. Benefits of layering

To demonstrate the benefits of separating an overflow loss system into layers, we consider two overflow loss systems.
The first system consists of a single layer (L = 1) of G1 = 100 server groups, and the second consists of two layers (L = 2)
with G1 = G2 = 50 server groups in each layer. All server groups in both system contain ten servers, so that each system
contains a total of 1000 servers. There are M = 500 request types in each system, each with an arrival rate of λm = 1.92,
so that each system receives a total offered load of 960 Erlangs or 96% loading. In the first system, each type-m request is
served by km,1 = k̂ server groups. In the second system, each type-m request is served by km,1 = k̂/2 + 5 server groups in
layer 1 and km,2 = k̂/2 − 5 in layer 2 (we consider even values of k̂ only).

For each value of k̂ in {20, 30, . . . , 80}, twenty random routing configurations are generated for both the one-layer and
two-layer system, and the overall blocking probability of each configuration evaluated via simulation. The results, shown in
Table 3, demonstrate consistently better performance of the two-layer system over the one-layer system. This is consistent
with earlier results for gradings [19] where it is found that by creating a progression frommore specialized to more generic
server groups, in terms of the number of request types served, the blocking probability of an overflow loss system can be
reduced.

5. Approximation

5.1. FPA

FPA makes two major simplifying assumptions: that the traffic offered to each server group in the system is Poisson and
independent of the traffic offered to the other server groups. However, since the traffic offered to each server group still
depends on the offered traffic to and blocking probability of the other server groups, fixed-point iteration [53] is required
to find the traffic offered to each group.

Consider layer ℓ on its own. Define:

• am,ℓ,n—Offered traffic composed of type-m requests, having overflowed n times so far in layer ℓ, for all m ∈ M,
0 ≤ n < km,ℓ. These requests are always offered to server group


ℓ, γm,ℓ,n


.

• aℓ,g—Total offered traffic to group (ℓ, g), for all g ∈ Gℓ.
• bℓ,g—Congestion probability of group (ℓ, g), for all g ∈ Gℓ, namely the probability that all servers in group (ℓ, g) are

occupied.

Summing over all eligiblem ∈ M, we obtain

aℓ,g =


m∈M

km,ℓ−1
n=0

1

γm,ℓ,n = g


am,ℓ,n,

where1 {·}denotes the indicator function. From the Poisson assumption, the blocking probability of group (ℓ, g) is estimated
via the Erlang B formula: bℓ,g = E


aℓ,g ,Nℓ,g


. From the independence assumption,

am,ℓ,n =


Am,ℓ, n = 0;
am,ℓ,n−1bℓ,γm,ℓ,n−1 , n = 1, 2, . . . , km,ℓ − 1.

The above equations form a fixed-point system which may be solved iteratively. The overflow traffic of type-m requests
from layer ℓ is

Wm,ℓ = Am,ℓ

km,ℓ−1
n=0

bℓ,γm,ℓ,n = am,ℓ,km,ℓ−1bℓ,ω (1)
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where ω = γm,ℓ,km,ℓ−1. Eq. (1) can be interpreted simply as follows: the overflow traffic of type m requests from a layer is
equal to the offered load of type-m requests to that layer, reduced by the congestion probabilities of all accessible server
groups in that layer, namely those in 0m,ℓ.

In this paper, we set a stopping criterion for FPA as follows: Let b(n)
ℓ,g represent the nth-iteration estimate of bℓ,g . If

|b(n)
ℓ,g − b(n−1)

ℓ,g | < 10−8 for all server groups (ℓ, g) in the system, then FPA is concluded and the nth-iteration estimates
are used as the final estimates.

5.2. FPAm

Weeliminate the Poisson assumption of FPA, but assume that overflow traffic canbe adequately characterizedby itsmean
and variance only. Consider layer ℓ on its own. Define am,ℓ,n, aℓ,g , and bℓ,g as for FPA, and a′

m,ℓ,n and a′

ℓ,g as the corresponding
variances. Summing over all eligiblem ∈ M, we obtain

aℓ,g =


m∈M

km,ℓ−1
n=0

1

γm,ℓ,n = g


am,ℓ,n

a′

ℓ,g =


m∈M

km,ℓ−1
n=0

1

γm,ℓ,n = g


a′

m,ℓ,n.

The blocking probability of group (ℓ, g) is estimated via Hayward’s approximation:

b = E

aℓ,g , a′

ℓ,g ,Nℓ,g


= E

aℓ,g

zℓ,g
,
Nℓ,g

zℓ,g


where zℓ,g = a′

ℓ,g/aℓ,g . For details on extending the Erlang B formula to non-integer number of servers, see [57]. From the
independence assumption,

am,ℓ,n =


Am,ℓ, n = 0;
am,ℓ,n−1bℓ,γm,ℓ,n−1 , n = 1, 2, . . . , km,ℓ − 1.

a′

m,ℓ,n =


A′

m,ℓ, n = 0;

M

am,ℓ,n−1, a′

m,ℓ,n−1, bℓ,γm,ℓ,n−1


, n = 1, 2, . . . , km,ℓ − 1,

whereM depends on the chosenmoment-matchingmethod. In this paper,we choose amoment-matchingmethodproposed
by Huang et al. [31], which we describe in detail in Section 5.7.

The above equations form a fixed-point system which may be solved iteratively. The overflow traffic of type-m requests
from layer ℓ is

Wm,ℓ = Am,ℓ

km,ℓ−1
n=0

bℓ,γm,ℓ,n = am,ℓ,km,ℓ−1bℓ,ω

with corresponding variance

W ′

m,ℓ = M

am,ℓ,km,ℓ−1, a′

m,ℓ,km,ℓ−1, bℓ,ω


,

where ω = γm,ℓ,km,ℓ−1.

5.3. IESA—Basic description

IESA involves applying the same methodology as FPA, namely decoupling of a system into full-accessibility subsystems
with Poisson input, but while FPA applies decoupling to the true model as defined in Section 3, IESA applies decoupling
to a surrogate model instead. This surrogate model, which we call the IESA model, is designed so that the non-hierarchical
dependencies inherent in the true model are captured within the hierarchy of the IESA model. As a result, IESA exhibits
much smaller errors than FPA in many cases.

In the IESA model, each request has three parameters: m, its type, 1, its set of previously attempted server groups in
the current layer, and �, its congestion estimate (a scalar) of the number of fully occupied server groups in the current layer.
A high � value means high system congestion and hence high system interdependence, meaning that if a request finds
that a server group to be full, that request is likely to find that other server groups are also full. Classification of requests
within each system layer by their � value creates a sub-hierarchy within each system layer where the jth level of the sub-
hierarchy includes incoming requests for which � ≤ j. In other words, � forms the mechanism by which IESA captures
mutual dependencies between server groups in a hierarchical manner.
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Fig. 4. Graphical depiction of the information exchange mechanism in the IESA model. In this figure, �2 represents the highest � value of all requests in
service at server group (ℓ, g), with �1 < �2 .

Consider layer ℓ on its own. All incoming requests to layer ℓ start with 1 = ∅ and � = 0. When an incoming
(m1, 11, �1)-request encounters a fully occupied server group (ℓ, g), it compares itself to the most senior (highest �

value) request in service, which we denote as an (m2, 12, �2)-request. Ties are broken arbitrarily. If �1 ≥ �2, then
no information exchange occurs and the incoming request overflows as an (m1, 11 ∪ {(ℓ, g)} , �1 + 1)-request. On the
other hand, if �1 < �2, then the incoming request exchanges its � value with the request in service and overflows as an
(m1, 11 ∪ {(ℓ, g)} , �2 + 1)-request, while the request in service becomes an (m2, 12, �1)-request. In this way, |1| ≤ �

for all incoming calls. A graphical depiction of this information exchange mechanism is given in Fig. 4.
For overflowing (m, 1, j)-requests in layer ℓ, |1| = n, there is a certain probability Pm,ℓ,n,j that the km,ℓ − n unvisited

server groups in 0m,ℓ \ 1 are all fully occupied. We estimate Pm,ℓ,n,j by considering Erlang’s Ideal grading [58] with Gℓ − n
individual servers, of which km,ℓ − n servers may be attempted at random and j − n servers are currently occupied. Thus

Pm,ℓ,n,j =


 j−n
km,ℓ−n

 Gℓ−n
km,ℓ−n

 , j ≥ km,ℓ;

0, otherwise.

(2)

This estimate is used by the IESAmodel to control overflow in the system.With probability 1−Pm,ℓ,n,j, the request is offered
as normal to thenext server group in its overflowpolicy, namely


ℓ, γm,ℓ,n


.With probability Pm,ℓ,n,j, the request immediately

overflows to the next system layer without attempting any server groups in0m,ℓ \1. If there are nomore layers, the request
is blocked and cleared. Note that Pm,ℓ,n,j = 1 when n = km,ℓ (each server group in 0m,ℓ has been visited) or when j = Gℓ (all
server groups in Gℓ are believed to be fully occupied). Also, as n ≤ j for all incoming requests, 0 ≤ Pm,ℓ,n,j ≤ 1, confirming
that our definition of Pm,ℓ,n,j is a valid one.

In summary, IESA transforms each layer of the truemodel fromanon-hierarchical traffic dependency structure to a purely
hierarchical traffic dependency structure based on �, resulting in provable convergence of IESA to a unique solution, which
FPA does not provide. The hierarchical dependency structure created by the IESA model (i.e. the IESA2 model in [33]) is
superior to that created by the IESA1 model, where the identity of a request is also exchanged in addition to the congestion
estimate, creating a surrogate model that is further from reality than the IESA2 model.

5.4. IESA—detailed description

Consider layer ℓ on its own and define em,ℓ,n,j, ẽm,ℓ,n,j, xm,ℓ,n,j, wm,ℓ,n,j, aℓ,g,n,j, ãℓ,g,n,j, aℓ,g,j, and bℓ,g,j as in Table 4. For
recursion purposes, all values above are assumed to be zero outside of the allowed indices. By definition:

wm,ℓ,n,j = xm,ℓ,n,jPm,ℓ,n,j

em,ℓ,n,j = xm,ℓ,n,j

1 − Pm,ℓ,n,j


, n > 0

ẽm,ℓ,n,j =

j
i=n

em,ℓ,n,i

ãℓ,g,n,j =

j
i=n

aℓ,g,n,i.

As only fresh calls can have |1| = 0, we obtain

em,ℓ,0,j =


Am,ℓ, j = 0
0, j = 1, 2, . . . ,Gℓ − 1.



Y.-C. Chan et al. / Performance Evaluation 104 (2016) 1–22 11

Table 4
Table of notations for IESA.

Symbol Definition Allowed indices
m ℓ n j g

em,ℓ,n,j Total offered traffic composed of (m, 1, j)-requests, |1| = n m ∈ M 0 . . . L − 1 0 . . . km,ℓ − 1 n . . .Gℓ − 1 –
ẽm,ℓ,n,j Total offered traffic composed of (m, 1, �)-requests, |1| = n,

n ≤ � ≤ j
m ∈ M 0 . . . L − 1 0 . . . km,ℓ − 1 n . . .Gℓ − 1 –

xm,ℓ,n,j Total overflow traffic from server group

ℓ, γm,ℓ,n−1


composed

of (m, 1, j)-requests, |1| = n.
m ∈ M 0 . . . L − 1 1 . . . km,ℓ n . . .Gℓ –

wm,ℓ,n,j Portion of xm,ℓ,n,j which is preempted and overflows immediately
to layer ℓ + 1 (or blocked and cleared if ℓ = L)

m ∈ M 0 . . . L − 1 1 . . . km,ℓ n . . .Gℓ –

aℓ,g,n,j Total offered traffic to server group (ℓ, g) composed of
(m, 1, j)-requests, m ∈ M and |1| = n

– 0 . . . L − 1 0..k⋆
ℓ,g − 1 n . . .Gℓ − 1 g ∈ Gℓ

ãℓ,g,n,j Total offered traffic to server group (ℓ, g) composed of
(m, 1, �)-requests, m ∈ M, |1| = n, and n < � < j

– 0 . . . L − 1 0..k⋆
ℓ,g − 1 n . . .Gℓ − 1 g ∈ Gℓ

aℓ,g,j Total offered traffic to server group (ℓ, g) composed of
(m, 1, �)-requests, m ∈ M and 0 ≤ |1| ≤ � ≤ j

– 0 . . . L − 1 – 0 . . .Gℓ − 1 g ∈ Gℓ

bℓ,g,j Congestion probability of server group (ℓ, g) at level j of the IESA
hierarchy in layer ℓ; in other words the probability that all
servers in (ℓ, g) are occupied by calls with � ≤ j

– 0 . . . L − 1 – 0 . . .Gℓ − 1 g ∈ Gℓ

k⋆
ℓ,g = maxm:(ℓ,g)∈0m,ℓ

denotes the largest value of km,ℓ for any request type with access to server group (ℓ, g).

Summing over all eligiblem ∈ M,

aℓ,g,n,j =


m∈M

1

γm,ℓ,n = g


em,ℓ,n,j.

Let k⋆
ℓ,g = maxm:(ℓ,g)∈0m,ℓ

km,ℓ denote the largest value of km,ℓ for all request typesmwith access to server group (ℓ, g). Then

aℓ,g,j =

min

j,k⋆

ℓ,g−1


n=0

ãℓ,g,n,j.

From the Poisson assumption, the blocking probability of group (ℓ, g) is estimated via the Erlang B formula: bℓ,g,j =

E

aℓ,g,j,Nℓ,g,j


.

Consider the server group (ℓ, g) =

ℓ, γm,ℓ,n−1


for some m ∈ M and 1 ≤ n ≤ km,ℓ. In our IESA model, there are two

ways for a request to overflow from (ℓ, g) with a congestion estimate of j:

1. A request with congestion estimate j− 1 arriving at (ℓ, g) finds with probability bℓ,g,j−1 that all servers are busy serving
requests with congestion estimates of j − 1 or less, meaning that no information exchange occurs and the incoming
request simply overflows with congestion estimate j.

2. A request with a congestion estimate of i ≤ j − 2 finds with probability bℓ,g,j−1 − bℓ,g,j−2 that all servers are busy, with
the most senior request in service having a congestion estimate of exactly j − 1. Since the incoming request is junior
(smaller congestion estimate) to this request, the congestion estimates of the two requests are exchanged. The request
in service obtains a new congestion estimate of i, while the incoming request overflows with a congestion estimate of j.

Combining these two possibilities, we obtain

xm,ℓ,n,j = em,ℓ,n−1,j−1bℓ,γm,ℓ,n−1,j−1 + ẽm,ℓ,n−1,j−2

bℓ,γm,ℓ,n−1,j−1 − bℓ,γm,ℓ,n−1,j−2


.

The above values can be obtained iteratively for j = 0, 1, . . . ,Gℓ−1. The overflow traffic of type-m requests from layer ℓ is

Wm,ℓ =

km,ℓ
n=1

Gℓ
j=km,ℓ

wm,ℓ,n,j.

To further explain the derivation of the IESA algorithm for our overflow loss system model, the relation between
aℓ,g,j, bℓ,g,j, and the IESA hierarchy is illustrated in Fig. 5. The proportion of requests at each level which are immediately
overflowed to the next layer depends on the 1 values of the individual requests.

5.5. IESAm

Assume that overflow traffic can be adequately characterized by its mean and variance only. Consider layer ℓ on its own.
Define em,ℓ,n,j, ẽm,ℓ,n,j, xm,ℓ,n,j, wm,ℓ,n,j, aℓ,g,n,j, ãℓ,g,n,j, aℓ,g,j, and bℓ,g,j as for IESA and e′

m,ℓ,n,j, ẽ
′

m,ℓ,n,j, x
′

m,ℓ,n,j, w
′

m,ℓ,n,j, a
′

ℓ,g,n,j,
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Fig. 5. Graphical depiction of the IESA hierarchy, showing the offered load to and overflow from server group (ℓ, g) at each level � of the IESA hierarchy.

ã′

ℓ,g,n,j, and a′

ℓ,g,j as the corresponding variances. By definition:

wm,ℓ,n,j = xm,ℓ,n,jPm,ℓ,n,j

w′

m,ℓ,n,j = x′

m,ℓ,n,jPm,ℓ,n,j

em,ℓ,n,j = xm,ℓ,n,j

1 − Pm,ℓ,n,j


, n > 0

e′

m,ℓ,n,j = x′

m,ℓ,n,j


1 − Pm,ℓ,n,j


, n > 0

ẽm,ℓ,n,j =

j
i=n

em,ℓ,n,i

ẽ′

m,ℓ,n,j =

j
i=n

e′

m,ℓ,n,i

ãℓ,g,n,j =

j
i=n

aℓ,g,n,i

ã′

ℓ,g,n,j =

j
i=n

a′

ℓ,g,n,i.

As only fresh calls can have |1| = 0, we obtain

em,ℓ,0,j =


Am,ℓ, j = 0
0, j = 1, 2, . . . ,Gℓ − 1

e′

m,ℓ,0,j =


A′

m,ℓ, j = 0
0, j = 1, 2, . . . ,Gℓ − 1.

Furthermore,

aℓ,g,n,j =


m∈M

1

γm,ℓ,n = g


em,ℓ,n,j

a′

ℓ,g,n,j =


m∈M

1

γm,ℓ,n = g


e′

m,ℓ,n,j

aℓ,g,j =

min

j,k⋆

ℓ,g−1


n=0

ãℓ,g,n,j

a′

ℓ,g,j =

min

j,k⋆

ℓ,g−1


n=0

ã′

ℓ,g,n,j.
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The blocking probability of group (ℓ, g) is estimated via Hayward’s approximation:

bℓ,g,j = E

aℓ,g,j

zℓ,g,j
,
Nℓ,g,j

zℓ,g,j


where zℓ,g,j = a′

ℓ,g,j/aℓ,g,j. Then

xm,ℓ,n,j = em,ℓ,n−1,j−1bℓ,γm,ℓ,n−1,j−1 + ẽm,ℓ,n−1,j−2

bℓ,γm,ℓ,n−1,j−1 − bℓ,γm,ℓ,n−1,j−2


x′

m,ℓ,n,j = M

em,ℓ,n−1,j−1, e′

m,ℓ,n−1,j−1, bℓ,γm,ℓ,n−1,j−1

+ M


ẽm,ℓ,n−1,j−2, ẽ′

m,ℓ,n−1,j−2, bℓ,γm,ℓ,n−1,j−1 − bℓ,γm,ℓ,n−1,j−2


whereM depends on the chosenmoment-matchingmethod. In this paper,we choose amoment-matchingmethodproposed
by Huang et al. [31], which we describe in detail in Section 5.7.

The above values can be obtained iteratively for j = 0, 1, . . . ,Gℓ−1. The overflow traffic of type-m requests from layer ℓ
is

Wm,ℓ =

km,ℓ
n=1

Gℓ
j=km,ℓ

wm,ℓ,n,j

with corresponding variance

W ′

m,ℓ =

km,ℓ
n=1

Gℓ
j=km,ℓ

w′

m,ℓ,n,j.

5.6. IESA+ and IESAm+

Eq. (2) relies on the implicit assumption that � and 1 are perfectly correlated: all server groups in 1 are accounted for
in the value of �. Due to information exchange, this is not necessarily the case. We therefore propose a new IESA surrogate
model where Pm,ℓ,n,j is replaced by P+

m,ℓ,n,j, in which � and 1 are assumed to be independent. While Pm,ℓ,n,j is based on an
Erlang’s Ideal Grading (EIG) in which the n visited server groups are excluded, P+

m,ℓ,n,j is based on an EIG which does include
the n visited groups. The EIG on which P+

m,ℓ,n,j is based includes Gℓ individual servers, of which km,ℓ − n servers may be
attempted at random and � servers are currently occupied. Thus

P+

m,ℓ,n,j =


 j
km,ℓ−n

 Gℓ
km,ℓ−n

 , j ≥ km,ℓ;

0, otherwise.

(3)

We shall use the term ‘‘IESA+ model’’ to refer to the new surrogate model, and IESA+ and IESAm+ to refer to the resulting
approximations with and without moment matching.

5.7. Moment matching

In this paper, we use themomentmatchingmethod of Huang et al. [31]. Aswe do not consider request requiringmultiple
service units, we present a simplified version of the original method here. The method of [31] computes the overflowmean
andvariance of separate traffic substreamsoffered to a server groupbymodeling the server group as a collection of imaginary
M/M/n/n server groups, one for each substream of the combined offered traffic.

Consider a server group with N servers offered traffic with a mean of A and a variance of A′, with Z = A′/A. The blocking
probability of the server group is estimated using Hayward’s approximation as B = E (A/Z,N/Z). We are interested in the
overflow process of a particular substream with an offered mean of a and an offered variance of a′. The overflow mean of
the substream is w = aB. Let z = a′/a.

To calculate the overflow variance w′, we construct an imaginary M/M/n/n server group with an offered load of ϕ = a/z
and n servers such that E (ϕ, n) = B. The overflow mean of this imaginary group is χ = ϕB, while the overflow variance is
computed via Riordan’s formula [28, Appx. I]:

χ ′
= χ


1 − χ +

ϕ

n + 1 + χ − ϕ


.

Finally, w′ is estimated as χ ′z. We shall write w′
= M


a, a′, B


. Note that if the substream consists of the entire offered

load, i.e. a = A and a′
= A′, then the method becomes equivalent to that of Fredericks [29]. A graphical representation of

our method is given in Fig. 6.
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Fig. 6. Graphical depiction of the moment matching method used in this paper.

Fig. 7. Logarithmic errors for the scenarios described in Section 6.1.

6. Numerical results

This section examines the performance of FPA, FPAm, IESA, IESAm, IESA+, and IESAm+ as applied to the overflow loss
model described in Section 3. We consider systems with two or more layers, with the skill set of servers in each layer
being, on average, at least as large as those in the previous layer, consistent with the design principles of [19]. For each data
point in each graph in this section, twenty (unless otherwise stated) random routing configurations are generated. For each
configuration, the overall blocking probability of the system is evaluated via each approximation and compared against
simulation results. In Section 6.9, individual request blocking probabilities are also considered. The simulation values for
each routing configuration are obtained by conducting the following:

• A minimum of five simulation runs of 50 million request arrivals each.
• Additional simulation runs until the 95% confidence interval, as obtained using Student’s t-distribution, is less than one

percent of the simulation mean, or until fifteen runs have been completed.

Each data point shows the mean logarithmic error of each approximation, with error bars representing one standard
deviation. Logarithmic error is defined as

log10


approximation blocking probability
simulation blocking probability


.

6.1. Varying the number of layers

We construct an overflow loss system with 96 server groups split evenly across L = 1, 2, 3, 4, 6, or 8 layers, with
Nℓ,g = 10 for all server groups (ℓ, g). Each request may attempt half of the server groups in each layer: km,ℓ = Gℓ/2
for all m and ℓ. There are M = 500 request types, each with an arrival rate of λm = 920/M Erlangs. The results are shown
in Fig. 7.

All IESA approximations are demonstrated to be several orders of magnitudemore accurate than FPA and FPAm, with the
largest benefitswhen L is small. The convergence of the IESA approximations to FPA as L increasesmakes intuitive sense as in
the extreme case of L = 48, km,ℓ = 1 for all request types k and layers ℓ and thus IESA and FPA must be equal. Furthermore,
IESA+ produces a notably higher estimate than IESA, with the difference increasing in L (although IESA and IESA+ must
eventually converge when L = 48). IESAm+ is demonstrated to be the most accurate approximation for all values of L.
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0

Fig. 8. Simulated blocking probabilities of the three surrogate models for the scenarios described in Section 6.1.

Fig. 9. Logarithmic errors for the scenarios described in Section 6.2.

Moment matching is demonstrated to have a small but consistent effect on the accuracy of FPA, IESA, and IESA+.
Nevertheless, the accuracy of IESAm and IESAm+ is decreasing in L.

The blocking probabilities of the IESA and IESA+ models, as evaluated via simulation, are shown in Fig. 8. It is
demonstrated that the two surrogate models have blocking probabilities slightly higher than but similar to that of the true
model, with the difference decreasing as the number of layers increases (i.e. as the number of server groups in each layer
decreases).

6.2. Varying the accessibility

Weconsider a casewith L = 2 layers,G1 = 60,G2 = 40,Nℓ,g = 10 for all server groups (ℓ, g),M = 500, andλm = 960/M
for all request types m. Each request of type m may attempt km,1 server groups in layer 1 and km,2 server groups in layer 2.
We set km,1 = km,2 = k for various values of k. The results are shown in Fig. 9.

The results demonstrate a rapid deterioration of FPA and FPAm as k increases. This is because as k increases, the number
of request types served by each server group also increases, in turn increasing the interdependencies between server groups
in each layer. In addition, the effect of the Poisson assumption is amplified both due to the increased peakedness of overflow
traffic and due to the cascading effect: any error in estimating the overflow traffic of a request type after a given number of
overflows affects the offered traffic of all subsequent server group attempts.

All four IESA approximations shown demonstrate a vast improvement in accuracy over FPA and FPAm, with an
improvement of roughly ten orders of magnitude for k = 40. Moment matching is demonstrated to provide a small
additional benefit, with IESAm+ the most accurate of approximation for all values of k shown.

Finally, Fig. 10 shows themean running time for FPAmand each IESA approximation for each value of k, with the standard
deviation shown as error bars. FPA is not shown as the running time of FPA is less than the resolution of the system clock
on the machine on which these configurations were evaluated. It is demonstrated that IESA and IESA+ have nearly identical
running times, as do IESAm and IESAm+. The running times of IESAm and FPAm are similar, with FPAm faster for small k
and IESAm faster for large k.

The results in Fig. 10 were obtained on an IBM server with two Intel Xeon CPUs running at 2.6 GHz with 96 GB of RAM.
For comparison, Markov-chain simulation consistently required at least 6000 s for each configuration, a difference of over
two orders of magnitude more than FPAm and IESAm.
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Fig. 10. Running time per configuration for the scenarios described in Section 6.2. The running time of FPA is less than the resolution of the system clock
on the machine on which these configurations were evaluated.

Fig. 11. Logarithmic errors for the scenarios described in Section 6.3. Each requestmay attempt 20−x server groups in layer 1 and 20+x groups in layer 2.

6.3. Varying the accessibility of each layer

In this subsection, we maintain L = 2 and G1 = G2 = 50 but varying the values of km,1 and km,2 so that km,1 = 20 − x
and km,2 = 20 + x for all request types m. We also maintain M = 500, λm = 960/M for all request types m, and Nℓ,g = 10
for all server groups (ℓ, g). The results are shown in Fig. 11.

The results demonstrate a deterioration of FPA and FPAm as x increases, except for large x where the higher blocking
probability of the system becomes a factor. Moment matching is shown to have a small positive effect, slightly reducing
the error of IESAm and IESAm+ compared to IESA and IESA+, respectively. IESAm+ is demonstrated to be the most accurate
approximation for all values of G2 shown.

6.4. Varying the number of server groups in each layer

In this subsection, we consider a two-layer (L = 2) overflow loss system with G1 + G2 = 100 server groups in total,
G1 ≥ G2, and examine the effect of assigning different numbers of groups to each layer while keeping the number of groups
accessible to each request in each layer the same. Each server group consists of Nℓ,g = 10 identical servers. There are
M = 500 request types with an arrival rate of λm = 960/M Erlangs each, and requests of each type m may attempt
km,1 = km,2 = 20 server groups in each layer. The results are shown in Fig. 12.

The results demonstrate a sharp deterioration of FPA and FPAm as G2 decreases, with the IESA approximations
outperforming FPA by roughly seven orders of magnitude for G2 = 20. This is because as G2 decreases, the number of
request types served by each server group in layer 2 increases, which in turn increases the interdependencies between
server groups in the layer. Moment matching is shown to have a small positive effect, slightly reducing the error of IESAm
and IESAm+ compared to IESA and IESA+, respectively. IESAm+ is demonstrated to be the most accurate approximation for
all values of G2 shown.
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Fig. 12. Logarithmic errors for the scenarios described in Section 6.4.

Fig. 13. Logarithmic errors for the scenarios described in Section 6.5.

6.5. Varying the number of request types

We consider a case with L = 2 layers, with G1 = 60 and G2 = 40. Each server group contains Nℓ,g = 10 servers. We
vary the number of request typesM , each with an arrival rate of λm = 960/M . Each request may attempt km,1 = km,2 = 20
server groups in each layer. The results are shown in Fig. 13.

The IESA approximations are consistently more accurate than FPA and FPAm by several orders of magnitude. Moment
matching is shown to have a small positive effect, slightly reducing the error of IESAm and IESAm+ compared to IESA and
IESA+, respectively. On the other hand, the effect of moment matching decreases in M as the offered traffic is more finely
divided into a larger number of request types. IESAm+ is demonstrated to be themost accurate approximation for all values
of λ shown.

6.6. Varying the total number of server groups

We consider a case with L = 2 layers, with G1 = 3n server groups in layer 1 and G2 = 2n servers in layer 2, for various
values of n. We maintain M = 500, km,1 = km,2 = n for all request types m, and Nℓ,g = 10 for all server groups (ℓ, g). The
arrival rate is set so that the blocking probability is approximately 0.5% in all cases. The results are shown in Fig. 14.

The results demonstrate a rapid deterioration of FPA and FPAm as n (and thus km,1 and km,2) increases, due to the
cascading effect in which approximation errors at lower-order overflows affect all higher-order overflow traffic. All four
IESA approximations shown demonstrate a vast improvement in accuracy over FPA and FPAm, with an improvement of
roughly seven orders of magnitude for n = 50. Moment matching is demonstrated to provide an additional small benefit,
with IESAm+ the most accurate of approximation for all values of n shown.

6.7. Varying the number of servers per group

We consider a case with L = 2 layers, G1 = 60, and G2 = 40 for all server groups (ℓ, g),M = 500, and km,1 = km,2 = 20
for all request typesm. We set Nℓ,g = N for various values of N for all server groups (ℓ, g). The arrival rate is set so that the
blocking probability is approximately 0.5% in all cases. The results are shown in Fig. 15.
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Fig. 14. Logarithmic errors for the scenarios described in Section 6.6. There are 3n server groups in layer 1 and 2n server groups in layer 2.

Fig. 15. Logarithmic errors for the scenarios described in Section 6.7.

The results demonstrate that while FPA and FPAm become less accurate as N increases, the IESA approximations become
more accurate. Momentmatching is demonstrated to provide an additional small benefit, with IESAm+ themost accurate of
approximation for all values of N shown. The effect of moment matching is largest when there is only one server per group.

6.8. Varying the arrival rate

In this subsection, we maintain L = 2, G1 = 60, G2 = 40, Nℓ,g = 10 for all server groups (ℓ, g), M = 500, and km,1 =

km,2 = 20, while varying the arrival rate. Let λ denote the total arrival rate to the system, which is distributed evenly among
allM request types. The results are shown in Fig. 16.

The results demonstrate a deterioration in accuracy of all the approximations as λ decreases. To explain this effect, we
consider a simpleM/M/k/kqueue andnote that for sufficiently loadedqueues, the derivative of the ErlangB formula increases
as λ decreases, as shown in Fig. 17. As a result, the estimate of the overflow probability of each server group becomes more
sensitive to errors in estimating the offered load.

The IESA approximations are consistently more accurate than FPA and FPAm by several orders of magnitude. Moment
matching is shown to have a small positive effect, slightly reducing the error of IESAm and IESAm+ compared to IESA and
IESA+, respectively. IESAm+ is demonstrated to be the most accurate approximation for all values of λ shown.

6.9. Unbalanced traffic

We consider a case with L = 2 layers, G1 = 60, G2 = 40, Nℓ,g = 10 for all server groups (ℓ, g), M = 500, and km,2 = 20
for all request types m. On the other hand, km,1 is set to be proportional to λm with a mean of 20, subject to 1 ≤ km,1 ≤ G1.
The total arrival rate is set to


m λm = 960, with λm ∝ m−0.6.

For each approximation, we post the distribution of the logarithmic error of each request type across twenty routing
configurations. The results are shown in Fig. 18. For the sake of comparison, all bin widths are equal and are plotted on the
same horizontal scale. The IESA approximations are demonstrated to reduce not only the approximation error for the mean
blocking probability of the system, but also the spread of the error for individual request types.
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Fig. 16. Logarithmic errors for the scenarios described in Section 6.8.

Fig. 17. Derivative of Erlang B formula with respect to the number of servers n, where ρ =
A
n is the offered load per server.

Fig. 18. Logarithmic errors for individual request types for an unbalanced system.
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Fig. 19. Sensitivity of blocking probability to the service time distribution.

6.10. Sensitivity to the service time distribution

We consider the k = 20 case from Section 6.2, while changing the service time distribution of requests. Four distributions
are considered, all with unit mean: exponential with a variance of 1.0, deterministic with a variance of 0.0, and lognormal
with variances of 0.04, 0.36, and 2.0. The blocking probabilities for 100 randomly generated routing configurations are
evaluated for each of the five distributions and denoted BE , BD, BL0.04 , BL0.36 , and BL2.0 , respectively. The results, shown in
Fig. 19, demonstrate less than 3% difference in BD, BL0.04 , BL0.36 , and BL2.0 to BE for all 100 configurations, suggesting that
blocking probability in our overflow loss systemmodel is not very sensitive to the service time distribution except through
its mean. Whiskers show the maximum and minimum values within 1.5 times the interquartile range.

7. Concluding remarks

We have extended FPA and the IESA framework to a multi-layer loss system architecture with both hierarchical inter-
layer overflow and non-hierarchical intra-layer overflow. We have proposed a new IESA approximation, IESA+, which
differs slightly from IESA on its handling of overflowing requests, based on the overflow history 1 and the congestion
estimate �. We have strengthened FPA, IESA, and IESA+ through the application of moment matching, generating FPAm,
IESAm, and IESAm+. Extensive numerical results demonstrate that IESA is consistently more accurate than FPA and FPAm,
with improvements of several orders of magnitude in many cases. Furthermore, IESAm, IESA+, and IESAm+ provide an
additional small but consistent improvement over IESA,with IESAm+ providing the best results out of all the approximations
considered. The IESA framework is shown to be most accurate when the number of layers is small, the number of accessible
server groups per request is small, and the arrival rate is high.

Despite consistent improvement over conventional approximations such as FPA and FPAm, with several orders of
magnitude inmany cases, there are still cases where the IESA framework can be improved. Further workmay be required to
develop new IESA surrogates with increased accuracy and robustness, as well as moment matching techniques specifically
tailored for IESA.

Finally, numerical results demonstrate near insensitivity of the blocking probability to the service time distribution
except through its mean, allowing the IESA framework to be used in a wide range of overflow loss systems.
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