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Abstract—Overflow loss systems have wide applications in
telecommunications and multimedia systems. In this paper, we
consider an overflow loss system consisting of a set of finite-buffer
processor-sharing (PS) queues, and develop effective methods for
evaluation of its blocking probability. For such a problem, an
existing approximation of the blocking probability is based on
decomposition of the system into independent PS queues. We pro-
vide a new approximation which instead performs decomposition
on a surrogate model of the original system, and demonstrate via
extensive numerical results that our new approximation is more
accurate and robust than the existing approach. We also examine
the sensitivity of the blocking probability to the service time
distribution, and demonstrate that an exponential distribution is a
good approximation for a wide range of service time distributions.

I. INTRODUCTION

Overflow loss systems are an important class of teletraffic
models with wide applications in telecommunications and
multimedia systems including gradings [1] and video-on-
demand (VoD) systems [2]. They have also found applica-
tions in service sectors for modeling emergency response
systems [3], [4], call centers [5] and intensive care units [6].
In general, overflow loss systems are characterized by requests
requiring service in a system comprising multiple nodes [7].
Requests are divided into classes. Each node is a finite-buffer
queue capable of serving requests from some of the classes.
If a node does not have sufficient idle capacity to serve a
request, the request overflows immediately to another node.
The request is blocked and cleared from the system if none
of the nodes capable of serving it has sufficient idle capacity.
Accordingly, the probability that the request is blocked and
cleared from the system is called the blocking probability.

The notion of a processor-sharing (PS) queue arose from
the modeling of time-shared computing systems [8]. In time-
sharing, a processor constantly cycles through its buffer of
requests, giving each request Q seconds of service time per
cycle. PS refers to the idealized case of time-sharing where
Q → 0 and there is no time penalty for swapping between
requests. PS can also be applied to the allocation of bandwidth
in web servers (see for example [9]).

In this paper, we consider an overflow loss system consisting
of a set of finite-buffer PS queues. The model, with the
assumptions of Poisson arrivals and exponentially distributed
service times, is motivated from [10] in the context of a peer-
to-peer (P2P) VoD system. It was observed in [10] that such
a system of single-server PS queues, where the buffer size

of each queue is K and the service capacity of each server
is B, has a lower blocking probability than a system of K-
server first-come-first-serve (FCFS) queues with no waiting
room and where the service capacity of each server is B/K.
An approximation method was presented in [10] for evaluation
of the blocking probability. It is based on decoupling the
given system into independent PS queues and treating each
queue as an independent M/M/1/K-PS queue. (Here, the use
of “-PS” to indicate PS queueing discipline in Kendall notation
is consistent with common practice, see e.g. [11], [12].) This
decomposition technique inherently gives rise to a fixed-point
solution of the blocking probability. We shall call it the PS
fixed-point approximation (PS-FPA), as it is similar to a classic
method first introduced in [13] and now widely known as the
Erlang fixed-point approximation (EFPA) [14] for evaluation
of blocking probabilities in loss networks.

In this paper, we extend and apply two recently established
approximation frameworks, namely, overflow priority classifi-
cation approximation (OPCA) [15] and information exchange
surrogate approximation (IESA) [16], for blocking probability
evaluation in the overflow loss system of PS queues. As a
result, we obtain PS-OPCA and PS-IESA, and demonstrate
that these new methods provide increased accuracy over PS-
FPA, with PS-IESA being generally the most robust of the
three approximations. We also examine the sensitivity of the
request blocking probability to the service time distribution,
demonstrating that an exponential distribution is a good ap-
proximation for a wide range of service time distributions.

The rest of the paper is organized as follows. In Section
II, we review the literature of PS queues and overflow loss
systems. The model of the overflow loss system of PS queues
is described in Section III. In Section IV, we provide details
of the three approximations. Numerical results are presented
in Section V, with concluding remarks given in Section VI.

II. RELATED WORK

A. PS queues

A theoretical treatment of a single M/M/1-PS queue was
given in [17], in which formulas are derived for the mean
sojourn time and the mean number of jobs in the system. An
extension of the M/M/1-PS queue to one with priorities was
also given in [17].

In many applications, a finite-buffer PS queue is of interest,
in which there is an upper bound on the total number of jobs
that the PS queue can accept [11], [18]. An optimal design
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of finite-buffer PS queues was provided in [19]. A study of
the mean sojourn time of requests to an M/M/1/K-PS queue,
conditioned on the service requirement, was done in [11].
For evaluation of the blocking probability of an M/M/1/K-PS
queue, it suffices to note that an M/M/1/K-PS queue has the
same Markov chain representation as an M/M/1/K (FCFS)
queue.

An extension of the M/M/1/K-PS queue to one with two
priority classes was studied in [20], where the queue is offered
a mix of long-lived real-time traffic and short-lived non-real-
time traffic, with the real-time traffic given strict (preemptive)
priority. An approximation for the blocking probabilities of
both traffic classes was provided.

B. Overflow loss systems

It is well known in teletraffic engineering that evaluation of
blocking probabilities in overflow loss systems is a difficult
problem [21]. This is particularly true for non-hierarchical
models where overflow from any node may directly or in-
directly affect the load of any other node. In particular, the
mutual overflow effect [22] refers to a situation where there
is congestion on a specific node causing overflow to the other
nodes, and where this overflow loads up the other nodes so
that they in turn yield overflow back to the original node. Such
models, in many practical cases, are not amenable to an exact
analysis because they exhibit significant state dependencies.
McNamara [23] showed that non-hierarchical overflow loss
systems do not have product-form solutions for the blocking
probability. The problem, with the assumptions of Poisson
arrivals and exponentially distributed service times, can only
be solved exactly by a multi-dimensional Markov process. Al-
though the blocking probability can, in principle, be obtained
by solving numerically a set of steady-state equations, this
approach is not scalable because of the curse of dimensionality.

In the model of [10], each node is an PS queue, and requests
seek service from the nodes in random order until an available
node is found. This forms a non-hierarchical overflow loss
system. The approximation in [10] assumes that the arrival
process to each node is Poisson and independent of the other
nodes; thus each node can be treated as an independent
M/M/1/K-PS queue. However, the mean of the arrival process
to each node still depends on the blocking probability of the
other nodes, creating a fixed-point dependency that can be
solved via iterative substitution.

The approximation method of [10] is similar to the classic
EFPA method for loss networks [14] in which each node is
treated as an M/M/K/K (FCFS) queue. (In contrast to an
overflow loss system, in a loss network requests must be
routed between specific origin and destination nodes.) EFPA
is itself based on an earlier approximation [13] that does not
require that the input to each node be Poisson, instead using a
two-moment approximation known as the equivalent random
method [24]. However, it was shown by Kelly [14] that for
fixed-routing circuit-switched networks EFPA is asymptoti-
cally exact. We will use the term EFPA to refer specifically

to Kelly’s version without moment-matching, and PS-FPA for
its adaptation to systems of PS queues.

Despite its success in certain applications, EFPA can often
lead to large errors [15], [16], due to the major assumptions
that the offered traffic to each queue follows a Poisson
process and that the queues are mutually independent. These
assumptions lead to two types of errors called the Poisson and
independence errors respectively.

While various moment-matching techniques exist for re-
ducing the Poisson error in systems of FCFS queues [13],
[25]–[27], no simple moment-matching technique exists for
systems of PS queues. We will therefore not use moment
matching in this paper and leave it as an open research problem
for future work. Techniques to reduce the independence error
for overflow loss systems have also been developed in recent
years [15], [16], [28]. The key philosophy behind these new
approximation frameworks is to establish a certain surrogate
model that in a systematic way approximately captures the
state dependencies due to mutual overflow in the original
model. Ideally, the difference between the blocking probability
of the surrogate model and that of the original model would
cancel out the error introduced in approximation of the surro-
gate model.

Wong et al. [15], [28] first developed the OPCA framework,
using a surrogate model in which a preemptive priority scheme
is deployed based on the number of times a call is overflowed.
The more recently developed IESA framework [16] uses an
alternate type of surrogate model that replaces preemption with
information exchange. Two IESA algorithms were presented in
[16]: while IESA1 is numerically equivalent to OPCA, IESA2
is shown to be more accurate and robust for overflow loss
systems of FCFS queues. We shall thus use the term IESA to
refer solely to IESA2 for the remainder of this paper.

III. MODEL

Our model is motivated from a P2P VoD system [10] and
considers two types of nodes: peers and leeches. Peers both
generate and serve requests, while leeches generate requests
only. Let X = {1, . . . ,X} be the set of peers, working
together to serve a catalog C = {1, . . . ,C} of contents. For
each peer x ∈ X, let Cx ⊆ C be the set of pre-fetched
contents available in x (we assume a static file assignment).
Conversely, for each content c ∈ C, let Xc ⊆ X be
the set of peers with a copy of c, with kc = |X|. Thus
Cx = {c : x ∈ Xc}, and Xc = {x : c ∈ Cx}. Finally, define
k?x = maxc∈Cx kc. We shall also define Y as the number of
leeches.

When a leech requests content c ∈ C, it attempts to
download content c from each peer in Xc in random order
until one of the peers accepts the download attempt. We shall
call this scheme repeated random trials or RRT. Finally, if a
request is not served by any peer, the request is blocked.

On the other hand, if a peer x requests content c ∈ C, it
first checks if c is available on x, that is, if c ∈ Cx. If yes,
the request is a local request and the peer uses its own local
copy of c. Otherwise, the request is a non-local request and
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the requesting peer downloads the content from another peer
using RRT. We define the blocking probability of the system as
the probability that a non-local request is blocked. All requests
made by leeches are also non-local requests.

Requests are served in a PS manner. Let Ux be the upload
bandwidth of peer x. This bandwidth is shared equally among
all requests at x. Let d be the minimum required transfer
bandwidth for immediate playback; the maximum number of
non-local requests each peer can serve is thus Nx = bUx/dc.

We assume that the arrival process of requests for each
content c is Poisson with rate λc, and the originating node for
each request is uniformly random, ignoring the playback/idle
status of each peer. It was shown in [29] that a Poisson process
is an accurate portrayal of request arrivals in a P2P system.
As the random thinning of a Poisson process is also a Poisson
process, the arrival process of non-local requests for each
content c is a Poisson process, with rate λc

(
1− kc

X+Y

)
.

We define the mean service time (µx,c)
−1 as the mean time

it would take peer x to upload content c to another node if no
other requests are being processed by x.

IV. APPROXIMATIONS

As PS-FPA, PS-OPCA, and PS-IESA are unscalable when
applied directly to a scheme based on RRT, we instead use,
for approximation purposes only, an alternate round robin
with random start (RRRS) scheme for download attempts.
Define an ordering on Xc such that Xc(i) < Xc(j) for all
0 ≤ i < j < kc. Let Xc,s be a leftwise circular shift of Xc

by s positions, such that Xc,s(i) = Xc((s + i) mod kc). A
request for content c will thus attempt, in order, peers Xc,s =
{Xc,s(0), . . . ,Xc,s(kc−1)} for some random s ∈ {0, . . . , kc−
1}. We also define X

(n)
c,s = {Xc,s(0), . . . ,Xc,s(n− 1)} as the

first n terms of Xc,s, n ≤ kc.
In Section V, we compare PS-FPA, PS-OPCA and PS-IESA

for RRRS directly against the simulation results for RRT. A
similar approach was used in [16] for systems of FCFS queues,
where it was shown that there is little difference between
RRRS and RRT for cases where EFPA, OPCA, and IESA
are tractable for both routing schemes.

A. PS-FPA

With the assumptions of independent Poisson input to each
queue, each peer x ∈ X can be seen of as an M/M/1/Nx-PS
queue. By changing each queue from an M/M/K/K queue
to an M/M/1/K-PS queue, we convert EFPA to PS-FPA. In
PS-FPA, as in EFPA, the offered traffic to each peer affects
its blocking probability, which in turn affects the amount of
overflow traffic from that peer to other peers. This creates
a cyclic dependency with a fixed-point solution that can be
found via repeated substitution.

Let ba, be be the set of integers between a and b inclusive,
thus ba, be = [a, b] ∩ Z. Define:
• λc,s,n, c ∈ C, s ∈ b0, kc − 1e, n ∈ b0, kc − 1e, as the

arrival rate to peer Xc,s(n) of requests for content c that
have overflowed n times along the path X

(n)
c,s .

• ac,s,n = λc,s,n (µx,c)
−1, c ∈ C, s ∈ b0, kc − 1e, n ∈

b0, kc−1e, as the offered load to peer Xc,s(n) of requests
for content c that have overflowed n times along the path
X

(n)
c,s , where x = Xc,s(n).

• ax,n, x ∈ X, n ∈ b0, kc − 1e, as the offered load to peer
x made up of requests that have overflowed n times.

• Ax, x ∈ X, as the total offered load to peer x, namely
Ax =

∑k?x−1
n=0 ax,n.

• Bx, x ∈ X, as the probability that all upload slots of peer
x are full.

Based on the Poisson traffic assumption, the blocking proba-
bility of peer x is given by

Bx =
ANx
x (1−Ax)

1−A(Nx+1)
x

,

which is the blocking probability of an M/M/1/Nx-PS queue
offered Ax Erlangs of traffic. Based on the independence
assumption, we can define λc,s,n = λc,s,n−1Bz where z =
Xc,s(n− 1) and

λc,s,0 =
λc
kc

(
1− kc

X + Y

)
.

Summing over all eligible c and s such that Xc,s(n) = x, we
obtain

ax,n =
∑

c:n<kc

∑
s:Xc,s(n)=x

ac,s,n.

The above equations form a circular relationship that can be
solved via iterated substitution. Finally, the blocking probabil-
ity of each content c ∈ C is B̂c =

∏
x∈Xc

Bx and the overall
system blocking probability is

B =

∑
c∈C λc

(
1− kc

X+Y

)
B̂c∑

c∈C λc

(
1− kc

X+Y

) . (1)

B. PS-OPCA

Under OPCA, each request in the surrogate model is
assigned an extra parameter based on the number of failed
download attempts made, from zero to kc, for a request for
content c. Requests with more failed attempts are considered
senior to requests with less failed attempts. A preemptive
priority scheme is applied where incoming requests to a peer
can preempt the most senior request in service if (i) all upload
slots of the peer are full, and (ii) the incoming request is
junior to the most senior request being served. The preempted
request may re-attempt to obtain service from any peer it did
not attempt before. Below, we present a version of OPCA for
systems of PS queues, namely PS-OPCA.

Formally, consider an incoming request to some peer x ∈ X
which has overflowed from n1 peers. If x has any upload slots
available, the request is served (and the service rates of all
other requests at x decrease accordingly). In the case that all
upload slots are full, let n2 be the seniority of the most senior
request being serviced by x. If n1 ≥ n2, the incoming request
overflows normally with a new seniority of n1 + 1. However,
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if n1 < n2, then the incoming request preempts the senior
call, which overflows with a seniority of n2 + 1.

Define:
• λc,s,n, c ∈ C, s ∈ b0, kc − 1e, n ∈ b0, kc − 1e, as the

arrival rate to peer Xc,s(n) of requests for content c with
seniority n, having overflowed along the path X

(n)
c,s .

• ac,s,n = λc,s,n (µx,c)
−1, c ∈ C, s ∈ b0, kc − 1e, n ∈

b0, kc − 1e, as the offered traffic to peer Xc,s(n) made
up of requests for content c with seniority n, where x =
Xc,s(n).

• ax,n, x ∈ X, n ∈ b0, kc − 1e, as the offered load to peer
x made up of requests with seniority n.

• Ax,n, x ∈ X, n ∈ b0, kc− 1e, as the offered load to peer
x made up of requests with seniority in b0,ne, namely
Ax,n =

∑n
i=0 ax,i.

• Bx,n, x ∈ X, n ∈ b0, kc − 1e, as the probability that all
upload slots of peer x are serving requests with seniority
in b0,ne.

• bx,n, x ∈ X, n ∈ b0, kc − 1e, as the probability that a
request with seniority in b0,ne overflows from x.

Based on the Poisson traffic assumption, we can define

Bx,n =
ANx
x,n(1−Ax,n)

1−A(Nx+1)
x,n

,

which is the blocking probability of an M/M/1/Nx-PS queue
offered Ax,n Erlangs of traffic. Based on the independence
assumption, we can define λc,s,n = λc,s,n−1Bz,n−1, where
z = Xc,s(n− 1) and

λc,s,0 =
λc
kc

(
1− kc

X + Y

)
.

Summing over all eligible c and s such that Xc,s(n) = x, we
obtain

ax,n =
∑
c:n<kc

∑
s:Xc,s(n)=x

ac,s,n,

from which Ax,n and Bx,n can be computed using the
equations above. Then,

bx,n =
Ax,nBx,n −Ax,n−1Bx,n−1

ax,n
,

with base case bx,0 = Bx,0.
The above equations can be solved iteratively for increasing

n. Finally, the blocking probability of each content c ∈ C is

B̂c =
1

kc

kc−1∑
s=0

kc−1∏
n=0

bXc,s(n),n

and the overall blocking probability can be found using (1).

C. PS-IESA

OPCA has been shown to be accurate when each request
can access a high percentage of the system resources, but less
so when the availability is not high [16]. IESA improves ac-
curacy when approximating low-availability systems by using
an alternate surrogate model based on information exchange
rather than preemption. In this paper, we will show this is also

true of PS-IESA, where the queue discipline is changed from
FCFS to PS.

In addition to a count of failed download attempts, each
request in the surrogate model of IESA also stores a congestion
estimate of the number of peers for which all upload slots are
occupied. When a request is declined by a peer with no upload
slots available, the incoming request exchanges congestion
estimates with the request in service possessing the highest
congestion estimate, if the incoming request is junior to that
request. After each failed download attempt (and possible
information exchange), a request may immediately give up
based on the probability that all remaining peers are full.

Formally, consider an incoming request for content x with
n1 overflows and a seniority of j1, which we denote as
an (n1, j1)-request. If x has upload slots available, the re-
quest is served. In the case that all upload slots are full,
select an (n2, j2)-request from the list of requests currently
being serviced by x such that j2 is the maximum of all
the congestion estimates of the requests. If j1 ≥ j2, the
incoming request overflows normally as an (n1 + 1, j1 + 1)-
request and the request in service remains an (n2, j2)-request.
However, if j1 < j2, then the incoming request overflows as
an (n1+1, j2+1)-request while the call in service becomes an
(n2, j1)-request. Thus, j ≥ n for any incoming (n, j)-request,
although this may be false for requests in service.

The congestion estimate is used to control the overflow of
requests as follows. Consider an (n, j)-request for content c.
We define

Pc,n,j =

(
j−n
kc−n

)(
X−n
kc−n

) ,

which is the probability that the remaining kc − n unvisited
peers in Xc are all full. With probability Pc,n,j , the request
immediately gives up without attempting any additional peers.
Otherwise, the process repeats until j = X or n = kc, upon
which Pc,n,j = 1 and the request is automatically blocked.

Define:
• λc,s,n,j , c ∈ C, s ∈ b0, kc−1e, n ∈ b0, min (j, kc − 1)e,
j ∈ b0,X − 1e, as the arrival rate to peer Xc,s(n) of
(n, j)-requests for content c, having overflowed along the
path X

(n)
c,s .

• ac,s,n,j , c ∈ C, s ∈ b0, kc− 1e, n ∈ b0, min (j, kc − 1)e,
j ∈ b0,X−1e, as the offered load to peer Xc,s(n) made
up of (n, j)-requests for content c, where x = Xc,s(n).

• ax,n,j , x ∈ X, n ∈ b0, min (j, k?x − 1)e, j ∈ b0,X − 1e,
as the offered load of all (n, j)-requests to peer x for all
contents c ∈ Cx.

• ãc,s,n,j , c ∈ C, s ∈ b0, kc− 1e, n ∈ b0, min (j, kc − 1)e,
j ∈ b0,X − 1e, as the offered load to Xc,s(n) made up
of all (n, Ω)-requests for content c, Ω ∈ b0, je.

• ãx,n,j , x ∈ X, n ∈ b0, min (j, k?x − 1)e, j ∈ b0,X − 1e,
as the offered load of all (n, Ω)-requests to peer x for all
contents c ∈ Cx, Ω ∈ b0, je.

• vc,s,n,j , c ∈ C, s ∈ b0, kc − 1e, n ∈ b1, min (j, kc)e,
j ∈ b1,Xe, as the overflow traffic from peer Xc,s(n)
made up of (n, j)-requests for content c.
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By definition, any of the above values are zero for j < n.
For recursion purposes, we shall also set the above variables
to be zero for negative n or j. We further define:
• Ax,j , x ∈ X, j ∈ b0,X − 1e, as the total offered load to

peer x of all requests with seniority Ω ∈ b0, je.
• Bx,j , x ∈ X, j ∈ b0,X − 1e, as the blocking probability

of peer x at level j.
By definition,

Ax,j =

min(j,k?x−1)∑
n=0

ãx,n,j ,

ãx,n,j =

j∑
i=n

ax,n,i,

ax,n,j =
∑
c:n<kc

∑
s:Xc,s(n)=x

ac,s,n,j ,

and

ãc,s,n,j =

j∑
i=n

ac,s,n,i.

Based on the Poisson assumption, we can define

Bx,j =
ANx
x,j (1−Ax,j)

1−A(Nx+1)
x,j

which is the blocking probability of an M/M/1/Nx-PS queue
offered Ax,j Erlangs of traffic.

There are two ways to generate an (n, j)-request. In the
first case, an (n − 1, j − 1)-request overflows without any
information exchange. In the second case, an (n − 1, Ω)-
request, Ω ≤ j − 2, exchanges its congestion estimate with
a request in service, the request in service having a seniority
of j − 1. Combining the two, we obtain

vc,s,n,j = ac,s,n−1,j−1Bz,j−1

+ ãc,s,n−1,j−2 (Bz,j−1 −Bz,j−2) ,

where z = Xc,s(n − 1). From this we obtain λc,s,n,j =
vc,s,n,jµz,c (1− Pc,n,j) for n ∈ b1, je, with base cases
λc,s,0,0 = λc

kc

(
1− kc

X+Y

)
and λc,s,0,j = 0 for j 6= 0.

The above equations can be solved iteratively for increasing
j. Finally, the blocking probability for each content c ∈ C is

B̂c =

(
1

λc

) kc∑
n=1

kc−1∑
s=0

X∑
j=kc

Pc,n,jvc,s,n,j ,

and the overall blocking probability is obtained using (1).

V. NUMERICAL RESULTS

In all experiments, we obtain the blocking probability of the
given system by discrete event simulation. In each run of the
simulation, we have ten million arrival events, with enough
runs to ensure a 95% confidence interval within 1% of the
simulation mean, as computed using Student’s t-distribution,
with a minimum of five runs and a maximum of fifteen runs.
Each data point in each plot shows the mean and standard
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Fig. 1. Blocking probabilities and logarithmic errors for the systems described
in Section V-A.

deviation of twenty random content allocations; however, the
standard deviations may be too small to be clearly visible. We
compute the error between the approximation and the simula-
tion in terms of the logarithmic error. Given an approximation
result x and a simulation result y, the logarithmic error is
log10 x− log10 y.

We shall define the availability level of a P2P system as

total number of storage slots in system
number of contents× number of peers

;

thus an availability level of 1.0 implies that each peer holds a
copy of every content in the system. Note that the availability
level of a system is an average value and an availability level
of x does not mean each content is hosted on roughly x of
all peers; in this paper the number of copies of each content
is made proportional to that content’s popularity. Copies are
distributed randomly and as evenly as possible such that all
peers hold roughly the same number of contents.

A. Varying the per-peer storage capacity

In this configuration, there are X = 200 peers with five
upload slots each, with the number of leeches Y set so that
the blocking probability is approximately 0.5% in all cases.
The arrival rate of all requests is

∑
c λc = X+Y requests per

hour. There are 2000 contents, with a Zipf(0.271) popularity
distribution, i.e. λc ∝ c−0.271, a commonly used distribution in
VoD systems [30]–[32]. The mean service time of each content
is (µx,c)

−1
= 0.2 hours. We examine different availability

levels from 0.05 to 0.5. We shall also examine the limiting
case of full availability. The results are shown in Fig. 1.

2015 IEEE Conference on Computer Communications (INFOCOM)

1413
Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on April 18,2025 at 11:29:12 UTC from IEEE Xplore.  Restrictions apply. 



1,000 1,010 1,020 1,030

10−5

10−3

10−1

SIM

PS-OPCA

PS-IESA

PS-FPA

Total requests per hour

B
lo

ck
in

g
pr

ob
ab

ili
ty

1,000 1,010 1,020 1,030
−3

−2

−1

0

1 PS-OPCA

PS-IESA

PS-FPA

Total requests per hour

Lo
ga

rit
hm

ic
er

ro
r

Fig. 2. Blocking probabilities and logarithmic errors for the systems described
in Section V-B.

It can be seen that the accuracy of PS-FPA quickly deteri-
orates as the availability level increases, while the accuracy
of PS-IESA is not very sensitive to the availability level
in this case. Furthermore, PS-OPCA tends to overestimate
blocking probability under low availability, converging with
PS-IESA as the availability increases. This means that PS-
OPCA transitions from overestimating for low availabilities to
underestimating for high availabilities. From the bottom plot,
we can see that while PS-OPCA is in general more accurate
than PS-IESA for a wider range of availability levels, PS-
IESA does well when the availability is low. Our results in
this subsection match those in [16, Figs. 1b-c] for systems of
FCFS queues.

B. Varying the offered load

In this configuration, there are X = 200 peers with five
upload slots each, with the number of leeches Y varying from
800 to 835. The arrival rate of all requests is

∑
c λc = X+Y

requests per hour. There are 2000 contents, with a Zipf(0.271)
popularity distribution and an availability level of 0.1. The
mean service time of each content is (µx,c)

−1
= 0.2 hours.

The results are shown in Fig. 2.
It can be seen that all approximations converge towards the

simulation value when the offered load and thus the blocking
probability are high, however PS-FPA is the most inaccurate
when the offered load is not high.

C. Varying the per-peer upload bandwidth

In this subsection, we will vary the upload bandwidth of
each peer, from twice d, the minimum required rate, to ten
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Fig. 3. Blocking probabilities and logarithmic errors for the systems described
in Section V-C with constant blocking probability. “Ratio” denotes the ratio
of the upload bandwidth to the video bitrate.

times. We shall set the arrival rate of requests in two ways. In
the first method, we shall keep a target blocking probability
of 0.5%. In the second method, we shall set the total request
arrival rate proportional to the upload bandwidth.

1) Constant blocking probability: In this configuration,
there are X = 200 peers with n upload slots each, n
varying from 2 to 10. The number of leeches Y is set so
that the blocking probably is roughly 0.5% in all cases. The
arrival rate of all requests is

∑
c λc = X + Y requests per

hour. There are 2000 contents, with a Zipf(0.271) popularity
distribution and an availability level of 0.1. The mean service
time of each content is (µx,c)

−1
= n−1 hours. The results

are shown in Fig. 3. While all three approximations converge
to the simulation result as the upload bandwidth of each peer
increases, PS-FPA and PS-IESA also become more accurate
when bandwidth is low, for example in the case with two
upload slots per peer. Also, PS-OPCA is less accurate than
PS-FPA in some cases, demonstrating that PS-OPCA is not
robust.

2) Proportional arrival rate: In this configuration, there are
X = 200 peers with n upload slots each, n varying from 2 to
10. The number of leeches Y is set such that X +Y = 200n.
The arrival rate of all requests is

∑
c λc = X+Y requests per

hour. There are 2000 contents, with a Zipf(0.271) popularity
distribution and an availability level of 0.1. The mean service
time of each content is (µx,c)

−1
= n−1 hours. The results are

shown in Fig. 4.
Based on the results, we see that all three approximations

become less accurate as n increases, with PS-FPA the most
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Fig. 4. Blocking probabilities and logarithmic errors for the systems described
in Section V-C with proportional arrival rate. “Ratio” denotes the ratio of the
upload bandwidth to the video bitrate.

inaccurate. This is in contrast with Fig. 3, in which PS-FPA
and PS-OPCA are accurate for large n. This reflects the effect
of the arrival rate on the accuracy of each approximation as
shown in Fig. 2.

D. Varying the content popularity distribution

In this configuration, there are X = 200 peers with five
upload slots each, with the number of leeches Y = 819 so
that the blocking probability is roughly 0.5% when the Zipf
scale parameter is set to 0.271. The arrival rate of all requests
is
∑
c λc = X + Y = 1019 requests per hour. There are 2000

contents, with availability levels of 0.1, 0.2, and 0.6, and a
Zipfian popularity distribution, with a scale parameter of 0 to
0.6. The mean service time of each content is (µx,c)

−1
= 0.2

hours. The results are shown in figures 5–7.
Based on the results, we see that as the content popularity

distribution becomes more skewed, the blocking probability
of the system decreases. Also, PS-FPA is shown to perform
poorly except for low availability levels, as also demonstrated
in Section V-A, while PS-OPCA and PS-IESA both perform
quite well. However, Fig. 5 shows a case where PS-OPCA
is less accurate than PS-FPA, once again demonstrating that
PS-OPCA is not robust.

E. Blocking probability of individual contents

In this configuration, there are X = 200 peers with five
upload slots each, with the number of leeches Y set so that
the blocking probability is roughly 0.5% when the Zipf scale
parameter is set to 0.271. The arrival rate of all requests is∑
c λc = X + Y = 1019 requests per hour. There are 2000
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Fig. 5. Blocking probabilities and logarithmic errors for the systems described
in Section V-D with an availability ratio of 0.1.

contents, with a Zipf(0.271) distribution. The mean service
time of each content is (µx,c)

−1
= 0.2 hours.

In Fig. 8, we group the contents by the number of copies
of each content and show the mean blocking probability for
each group. The top graph shows an availability level of
0.1 and the bottom graph 0.4. The results show that PS-
IESA performs reasonably well at estimating the blocking
probability of individual contents, whereas PS-OPCA does not
perform so well in the 0.1 availability case, especially for the
most popular contents. On the other hand, PS-FPA grossly
underestimates the blocking probability in both cases, with
the worse performance for the 0.4 availability case, consistent
with the results of the mean blocking probability in Fig. 1
(note the different y-scale for the two graphs).

F. Sensitivity to service time distribution

In this configuration, there are X = 200 peers with
five upload slots each, and Y = 819 leeches (which gives
a blocking probability of roughly 0.5% for exponentially
distributed service times). The arrival rate of all requests is∑
c λc = X + Y = 1019 requests per hour. There are 2000

contents, with a Zipf(0.271) distribution and an availability
index of 0.1. The mean service time of each content is
(µx,c)

−1
= 0.2 hours.

For each system, we calculate via simulation the request
blocking probability of 20 random replica assignments for
several service time distributions: Dirac delta (standard de-
viation of zero), exponential (standard deviation of 0.2), and
lognormal with standard deviations of 0.04 and 0.09. The
results are shown in Fig. 9. Box plot whiskers represent the
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Fig. 6. Blocking probabilities and logarithmic errors for the systems described
in Section V-D with an availability ratio of 0.2.

TABLE I
RUNNING TIMES IN SECONDS FOR SECTION V-A

Availability level SIM PS-FPA PS-OPCA PS-IESA

0.1
(Mean) 4906 1.4897 0.0218 16.75
(St. dev.) 901.9 0.01672 0.0079 0.039

0.2
(Mean) 6077 10.647 0.0891 37.47
(St. dev.) 1805 0.1752 0.0077 0.705

0.6
(Mean) 8071 88.582 0.7801 128.78
(St. dev.) 2538 0.0696 0.0179 0.066

smallest and largest values within 1.5 times the inter-quartile
range. The results show that the model considered in this
paper is not very sensitive to the service time distribution
and that assuming an exponential distribution is adequate for
approximation of the general case.

G. Running time comparison

The running times for the configurations in Section V-A
were analyzed for availability levels of 0.1, 0.2, and 0.6.
For each availability level, ten random content allocations
were chosen. The mean running time in seconds for each
configuration is given in Table I.

The above running times are for an Intel R© i7-3770 proces-
sor with 8 GB of RAM. The results show that the speed of
PS-IESA is comparable with PS-FPA, and roughly two orders
of magnitude faster than simulation.
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Fig. 7. Blocking probabilities and logarithmic errors for the systems described
in Section V-D with an availability ratio of 0.6.
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Fig. 8. Blocking probabilities for the systems described in Section V-E.
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Fig. 9. Blocking probability distributions for the service time distributions
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VI. CONCLUDING REMARKS

Considering an overflow loss system of multiple finite-
buffer PS queues, we have shown that such a model is
nearly insensitive to the service time distribution. We have
compared three approximations for evaluation of the blocking
probability, namely PS-FPA, PS-OPCA and PS-IESA. Both
PS-OPCA and PS-IESA show improvement over PS-FPA in
terms of accuracy, and are on par with or faster than PS-
FPA in terms of computation time. However, PS-OPCA is
not robust: there are certain cases where PS-OPCA can be
less accurate than PS-FPA, especially when the availability
level is low. In contrast, PS-IESA is not very sensitive to the
availability level. The results also demonstrate that PS-IESA is
more robust compared to PS-FPA and PS-OPCA for estimating
the blocking probability of individual contents.

Although PS-IESA does much to approximate the depen-
dency effects between different nodes in the system, further
reduction of the approximation error may be possible by taking
higher moments of the overflow traffic into account. However,
unlike systems of FCFS queues for which established moment
matching techniques exist, more research is required to study
the overflow processes of systems with multiple PS queues.
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