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Abstract— The Information Exchange Surrogate
Approximation (IESA) is a powerful tool for estimating
the blocking probability of non-hierarchical overflow loss
systems (NH-OLSs), but can exhibit significant approximation
errors in some cases. This letter proposes a new method of
evaluating the blocking probability of generic NH-OLSs by
combining machine learning with IESA. Specifically, we modify
IESA by using neural networks (NN) to tune a newly introduced
parameter in the IESA algorithm. Extensive numerical results
for a simple NH-OLS show that our new hybrid method, which
we call IESA+NN, is more accurate and robust than both base
IESA and direct NN-based approximation of NH-OLS blocking
probability, while remaining much more computationally efficient
than computer simulation. Furthermore, due to the generic
nature of our technique, IESA+NN is also easily extensible to
more specialized stochastic models for communications and
service systems, where base IESA has previously been applied.

Index Terms— Teletraffic, neural networks, overflow loss
systems.

I. INTRODUCTION

MANY communications and service systems, such as
cellular networks [1], [2], content distribution net-

works [3], and healthcare systems [4], [5] can be modeled as
non-hierarchical overflow loss systems (NH-OLSs), in which
servers are divided into groups, each request requires one
server, and each server group serves some subset of the request
types in the system. An incoming request overflows from one
server group to the next until a suitable server is found, or is
blocked and cleared from the system immediately if no such
server is available; the probability of this is called the blocking
probability and is a main performance metric of NH-OLSs.

A common feature in many NH-OLSs is mutual over-
flow [6], where congestion at one server group causes overflow
to other server groups, which in turn become congested
and yield overflow back to the original server group. While
generally providing better performance than systems without
mutual overflow [7], [8], such systems are difficult to analyze
due to the curse of dimensionality: the state space of the
system is exponential in the number of server groups, and
no product-form solution exists for the steady-state probabili-
ties [9]. Although the blocking probability of NH-OLSs with
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mutual overflow can be evaluated using simulation, this can
be quite computationally expensive and infeasible for solving
optimization problems where a large number of system con-
figurations must be evaluated and compared, e.g. adaptive sys-
tems where such optimizations may occur at frequent intervals.

A major approximation approach for evaluating blocking
probability in NH-OLSs with mutual overflow is to decompose
the system into independent server groups [10], [11]; the
well-known Erlang Fixed-Point Approximation (EFPA) [12]
is an example of this. In [13], an improved decomposition
method, the Information Exchange Surrogate Approximation
(IESA), was proposed, which transforms the NH-OLS using
a fictitious surrogate model before applying decomposition.
However, as demonstrated in this letter, significant approxi-
mation errors remain in many cases.

Another method for evaluating blocking probability in
NH-OLSs is using neural networks (NNs), thus offloading the
computational effort to the training phase and allowing fast
evaluation of the blocking probability once a trained NN is
obtained. As an example, variants of the Extreme Learning
Machine (ELM) algorithm were used in [14], [15] to train
a neural network for the evaluation of blocking probability
in optical networks. However, as demonstrated in this letter,
direct estimation of blocking probability using NNs (hereafter
called “direct NN”) is not robust, especially when attempting
to extrapolate outside the range of the training set.

In this letter, we propose a new blocking probability
evaluation method for NH-OLSs with mutual overflow by
introducing a new tuning parameter to IESA, using an NN to
estimate the tuning parameter rather than directly estimating
the blocking probability of the NH-OLS. Extensive numerical
results demonstrate that our newly proposed method, which
we call IESA+NN, is more accurate and robust than IESA
or direct NN alone. Furthermore, since IESA+NN differs
from IESA only in the introduction of a tuning parameter,
it can therefore be applied to a wide range of scenarios where
IESA has already been applied, e.g. emergency healthcare [5]
and cellular networks [2], and to NH-OLSs with non-Poisson
arrival traffic [16] or processor-sharing queues [17]. Finally,
since computing the output of a trained NN is quite efficient,
the amortized computational complexity of IESA+NN (i.e.
excluding the one-time cost of generating training samples
and building the NN) is low; in fact, base IESA, IESA+NN,
and direct NN all have polynomial complexity in the number
of server groups and/or the number of NN hidden nodes.

II. SYSTEM MODEL

As in [16], we consider an NH-OLS model with G server
groups each containing N identical servers. Requests to the
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system arrive according to a Poisson process with an intensity
of aGN Erlangs, require the service of any server in the
system, and may attempt up to k server groups in the system at
random. The service times of the requests are independent and
exponentially distributed with unit mean. Note that although
simple formulas for the N = 1 case have been known for
a full century [18], no scalable exact formula exists for the
blocking probability in the general case, as no product form
solution exists for the state probability distribution [9].

III. INFORMATION EXCHANGE

SURROGATE APPROXIMATION

A simple and classic method for overcoming the “curse
of dimensionality” in overflow loss systems and networks
is to apply two major simplifying assumptions. First, state
dependencies between server groups are ignored, decomposing
the system into a set of independent server groups [10].
Second, the offered traffic to each server group, including
overflow traffic from other server groups, is often treated
as if it were Poisson [12]. However, these two simplifying
assumptions can lead to very large approximation errors in
many cases when mutual overflow is present, and completely
fail to capture the effect of G, the number of server groups in
the NH-OLS, on the blocking probability [13], [16].

Therefore, in this letter, we will use an alternative method
called the Information Exchange Surrogate Approximation
(IESA) [13], [16] to estimate NH-OLS blocking probabil-
ity. IESA is a decomposition-based approximation, meaning
that it treats each server group as independent of the other
groups. To compensate for approximation errors caused by
this decomposition, IESA applies decomposition not to the
NH-OLS model directly, but to a fictitious surrogate model,
hereafter referred to as the IESA model.

In the IESA model, each request carries two attributes:
Δ, the set of previously attempted server groups, and Ω,
an estimate of the number of fully occupied server groups in
the system. The Ω attribute is used for information exchange of
the congestion level in the NH-OLS: in addition to increasing
by one for each overflow, an incoming request to a server
group will exchange its Ω attribute with that of the highest-Ω
request in service if higher than that of the incoming request.
Additionally, an overflowing (Δ, Ω)-request will, with prob-
ability πn,Ω, abandon the NH-OLS immediately without
attempting any additional server groups, where

πΩ,n =

⎧⎪⎨
⎪⎩

0, Ω < k(
Ω

k−n

)
(

G
k−n

) , k ≤ Ω ≤ G.
(1)

Note that πΩ,n = 1 if k = n or Ω = G.
A full description of IESA for the current NH-OLS model

can be found in [16]. A summary is as follows:

aj,n =

⎧⎪⎨
⎪⎩

λ, n = j = 0
0, n = 0, j �= 0
wj,n (1 − πj,n) , otherwise,

(2)

ãj,n =
∑j

i=n ai,n, Aj =
∑j

n=0 ãj,n,

bj = E (Aj , N) (3)

wj,n = aj−1,nbj−1 + ãj−2,n−1 (bj−1 − bj−2) (4)

TABLE I

NOTATION FOR IESA

P̂IESA = 1 −
∑k

n=1

∑G
j=n wj,nPj,n

λ

= 1 − AG−1 (1 − bG−1)
λ

, (5)

with notation defined as in Table I, where (3) denotes the
Erlang B formula [18]. The above equations define a recursive
algorithm for IESA in Ω = 0 . . . G and n = 0 . . . k. Finally,
when referring to the application of IESA to a specific set of
NH-OLS parameters xi, we will use the notation P̂IESA (xi)
to refer to the blocking probability of that particular NH-OLS.

IV. DIRECT NN APPROACH

Apart from simulation and the IESA approximation
described in the preceding section, we can estimate the block-
ing probability of NH-OLSs using machine learning. In what
we call here as the direct NN approach, we use a single-layer
feedforward network (SLFN) architecture which we train using
the random-search-enhanced error-minimized extreme learn-
ing machine (EEM-ELM) algorithm described in [15], [19].
Note that [20], [21] demonstrated that ELM algorithms,
including EEM-ELM, have universal approximation ability,
despite the random input weights and biases of the hidden
nodes. As only the output weights of the SLFN need to be
trained, ELM algorithms such as EEM-ELM do not require
backpropagation [22], leading to a much more computationally
efficient training algorithm with fewer hyperparameters (which
are the parameters of the EEM-ELM algorithm itself rather
than of the NH-OLS to be evaluated) than many other machine
learning algorithms. For an overview on ELM algorithms,
see [23].

Compared to the original ELM algorithm [22], EEM-ELM
has two main differences. First, in EEM-ELM, hidden nodes
added to the NN incrementally in an iterative process. Second,
EEM-ELM generates multiple candidate groups of hidden
nodes in each iteration and only adds to the NN the group with
the largest resulting reduction of the estimation error. This has
been shown to reduce the number of hidden nodes required for
a given estimation error threshold [15], [19]. EEM-ELM thus
has four hyperparameters: L0, the initial number of hidden
nodes in the NN, Lmax, the final number of hidden nodes,
j, the number of candidate groups of new hidden nodes to
consider in each iteration, and δL, the number of hidden nodes
in each candidate group. We also define NT as the number of
samples in the training set, xi = (log Gi, log ki, log Ni, ai) as
the input vector of the ith training sample (with Gi, ki, Ni,
and ai defined as in Section II), and

oi = log P (xi) (6)

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on April 18,2025 at 11:16:28 UTC from IEEE Xplore.  Restrictions apply. 



1488 IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 5, MAY 2021

as the target output of the ith training sample (where
P (xi) is the simulated blocking probability of the NH-OLS
corresponding to the ith training sample). As in [15],
we use a sigmoid activation function for the hid-
den nodes. The output of the trained NN is denoted
ô (x) =

∑
� β�/ [1 + exp (−wT

�x + a�)] where w�, a�, and
β� are the input weight vector, activation bias, and output
weight for the �th hidden node, respectively. The error func-
tion to be minimized is therefore ε =

∑
i (oi − ô (xi))

2,
summing over all training inputs i. Finally, the estimated
blocking probability for any given NH-OLS with parameters
x is P̂NN (x) = exp (ô (x)) . For a full description of the
EEM-ELM algorithm, see [15], [19].

V. IESA+NN

Although more accurate than previous decomposition-based
methods, numerical results [13], [16] have revealed areas
where IESA still exhibits significant approximation error.
To obtain the high approximation capability of NN, while
retaining IESA’s ability to capture part of the underlying
structure of the NH-OLS, in this letter we propose a new
approximation method which we call IESA+NN. To obtain
IESA+NN, we add a tuning parameter to IESA, which we set
using a NN trained with the EEM-ELM algorithm. Specifi-
cally, we change (1) and (2) to

πΩ,n,τ =

⎧⎨
⎩

0, τΩ < k

min
{

( τΩ
k−n)

( G
k−n)

, 1
}

, otherwise
(7)

and

aj,n =

⎧⎨
⎩

λ, n = j = 0
0, n = 0, j �= 0
wj,n (1 − πj,n,τ ) , otherwise,

respectively, and replace P̂IESA (xi) in (5) with
PIESA+NN (τ, xi). The value of τ such that PIESA+NN (τ, xi) =
P (xi) is denoted as τ∗ (xi), and can easily be found via bisec-
tion as PIESA+NN (τ, xi) is non-decreasing in τ . Since bisection
is of low computational complexity (linear in the number of
significant digits), the NN training costs of both approaches
are similar. Note that PIESA+NN (1, xi) = P̂IESA (xi).

As in the direct NN approach, the NN input is the collection
of NH-OLS parameters, i.e. xi = (log Gi, log ki, log Ni, ai).
However, (6) is changed to oi = log τ∗ (xi). Finally, the esti-
mated blocking probability for any given NH-OLS with para-
meters x is P̂IESA+NN (x) = PIESA+NN (τ̂ (x) , x) ,where ô (x)
is the NN output and τ̂ (x) = exp (ô (x)) is the estimated
tuning parameter to be substituted into (7).

VI. NUMERICAL RESULTS

Note that the neural networks in both direct NN and
IESA+NN share the same input parameters and differ only in
target output. For both direct NN and IESA+NN, a training
set was constructed as follows:

• G = 10, 12, 16, 20, 30, 50, 70, 100, 120, 150, 200, 300,
500, 700, 1000

• k = 4, 6, 8, 10, 12, 16, 20, 30, 50, 70, 100, 120, 150,
200, 300, 400, …, 1000 such that k ≤ G

• N = 1, 2, 3, 5, 7, 10, 12, 15, 20, 30, 50, 70, 100
• a = 0.3 to 1.0 in increments of 0.025

Fig. 1. Mean absolute log error of EEM-ELM as applied to the training set.

We also require P̂IESA > 10−7 due to inaccuracy of the
simulation result for low blocking probabilities, using the more
computationally efficient IESA result rather than the simula-
tion result for the filtering of the training set cases. The final
size of the training set is NT = 20, 637.

Then, for both direct NN and IESA+NN, the NNs were
trained using the EEM-ELM algorithm, with an initial size
of L0 = 50, δL = 2, J = 50, and Lmax = 500. Fig. 1
shows the mean absolute error of {o (xi)}NT

i=1 for each NN,
i.e. E = (1/NT )

∑NT

i=1 |ô (xi) − o (xi)|. Note that this is
equivalent to the mean absolute logarithmic error (MALE)
of {P̂NN (xi)}NT

i=1 and {τ̂ (xi)}NT

i=1, respectively: EP̂ =
1

NT

∑NT

i=1

∣∣∣log10
P̂NN (xi)

P (xi)

∣∣∣ and Eτ̂ = 1
NT

∑NT

i=1

∣∣∣log10
τ̂(xi)
τ∗(xi)

∣∣∣.
It is demonstrated that the MALE decreases as the number

of hidden nodes increases. Note that EP̂ and Eτ̂ are not
directly comparable, and the aim of Fig. 1 is simply to
demonstrate that for both NNs, around 500 hidden nodes is
sufficient.

In the following text, we compare the accuracy of base
IESA, direct NN, and IESA+NN relative to simulation
results, i.e. the values P̂IESA, P̂NN, and P̂IESA+NN relative
to P , for a variety of test cases. The simulation values
P were obtained using Markov-chain simulation with 108

arrivals per simulation run. Similar results were obtained
using Levenberg–Marquardt backpropagation (LMBP); how-
ever, the results suggest slightly better extrapolation ability of
EEM-ELM compared to LMBP when applying IESA+NN to
cases outside the training set range. We thus only show the
EEM-ELM-based results here.

Fig. 2 shows the blocking probability of an NH-OLS as
G increases with k fixed. It was proved in [16] that base
IESA is asymptotically exact in such cases as G → ∞,
i.e. P̂IESA → P . This is supported by our numerical results,
with the rate of convergence dependent on k. In addition,
IESA+NN also appears to be asymptotically exact as G → ∞,
i.e. P̂IESA+NN → P , whereas P̂NN quickly diverges from P
for G > 1000, the maximum value of G in the training
dataset. This demonstrates the poor extrapolation ability of
direct NN compared to the IESA+NN approach. Overall, the
numerical results demonstrate that IESA+NN is significantly
more accurate and robust than both direct NN and base IESA.

Fig. 3 shows the blocking probability of an NH-OLS as both
G and k increase in a fixed ratio. The results demonstrate that
IESA+NN is significantly more robust than both base IESA
and direct NN. In particular, direct NN performs poorly in
the k = G/2 case for small values of G and k; however,
direct NN also performs poorly in the bottom-left case even
for larger values of G and k, and is in fact less accurate than
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Fig. 2. Simulated and estimated blocking probabilities with respect to G.

Fig. 3. Simulated and estimated blocking probabilities with respect to G
where both G and k increase in a fixed ratio.

base IESA for cases around G = k = 100. On the other hand,
in the bottom-right case, IESA+NN exhibits problems when
G and k are both very large, due to the larger uncertainty in
the simulation results and the low number of such cases in the
training set (only cases with a equal or close to 1 are admitted
due to the low blocking probability of the other cases).

Fig. 4 shows the blocking probability of an NH-OLS as
k increases with G fixed. The numerical results demonstrate
that while both IESA+NN and direct NN are more accurate
than base IESA as k increases, pure NN is not as robust as
IESA+NN when both G and k are small, as shown in the left
side of Fig. 4.

Fig. 5 shows the blocking probability of an NH-OLS with
respect to N . The results show that IESA+NN is much more
accurate than IESA or direct NN for large N , particularly
outside the training set range of N ≤ 100.

Fig. 6 shows the blocking probability of an NH-OLS with
respect to a. For the G = 20 case, direct NN and IESA+NN
are both quite accurate for low loads, but pure IESA becomes
less accurate as the offered load decreases. In the G = 2000
case, pure IESA and IESA+NN are both quite accurate for

Fig. 4. Simulated and estimated blocking probabilities with respect to k.

Fig. 5. Simulated and estimated blocking probabilities with respect to N .

Fig. 6. Simulated and estimated blocking probabilities with respect to a.

the entire range of a shown, but direct NN is quite inaccurate
for high loads.

VII. NH-OLSS WITH NON-POISSON INPUTS AND

NON-EXPONENTIAL SERVICE TIMES

In this section, we expand our methodology to evaluate
the blocking probability of NH-OLSs with non-Poisson inputs
and non-exponential service times. Although IESA has been
extended in [16] to handle non-Poisson input traffic, it still
cannot model the effect of non-exponential service times.
We can use IESA+NN to resolve this issue, by applying the
IESA part of IESA+NN as if the service times were exponen-
tially distributed and relying on the NN part of IESA+NN to
“correct” for the simplifying assumptions used.

We consider a set of NH-OLS configurations similar to
that defined in Section II, but change the request service
time distribution to lognormal with mean 1.0 and standard
deviation σ. Note lognormal distributions occur frequently in
human behavior models, e.g. call center service times [24] and
ICU patient stays [25]. Additionally, each request must now
attempt a preferred server group before randomly attempting
up to k − 1 other groups, such that the arrival process of
fresh requests to each preferred server group forms an inter-
rupted Poisson process [26] with intensity Na and peakedness
(variance-to-mean ratio) z.

Our training set is constructed as follows:
• G = 10, 15, 20, 50, 100, 200, 500, 1000, 20000
• k = 4, 6, 10, 15, 20, 70, 100, 150, 200 such that k ≤ G
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Fig. 7. Simulated and estimated blocking probabilities with respect to G,
for an NH-OLS with k = 12, N = 10, a = 0.9, and σ = 2.

• N = 1, 2, 3, 5, 10, 20, 50, 100
• a = 0.3 to 1.0 in increments of 0.025
• z = 1.1, 1.25, 1.5, 2, 2.5, 3
• σ = 0.5, 1, 1.5, 2, 2.5, 3
• PIESA > 10−7 and P > 5 × 10−7

where PIESA and P are the blocking probability of the
NH-OLS as evaluated using the extended IESA method
(i.e. [16]) and simulation, respectively. However, for
G = 20000, instead of using simulation, which can be
time-consuming and/or inaccurate for large G, we use pre-
viously proven asymptotic properties of IESA shown in [16]
and assume P = PIESA.

Fig. 7 shows the blocking probability of the NH-OLS with
respect to G for different values of z. While the results
demonstrate that both direct NN and IESA+NN are signif-
icantly more accurate than IESA alone, IESA+NN is the only
approximation of the three to maintain robustness across the
entire range of G shown, whereas direct NN is inaccurate
for G > 1000.

VIII. CONCLUDING REMARKS

In this letter, we considered a simple NH-OLS model
with mutual overflow and showed that even accounting for
symmetries, the number of distinct states is in general too
many for exact analysis, whereas simulation is computation-
ally expensive and existing approximation methods are not
accurate and robust enough. We proposed a new approxi-
mation method, IESA+NN, based on introducing a control
parameter into IESA which we tune using a neural network.
Extensive numerical results demonstrate that IESA+NN is
more accurate and robust than both base IESA and the
direct NN approach. Furthermore, as noted in Section I, the
amortized computational complexity (i.e. excluding one-time
cost of generating training samples and building the NN) of
IESA+NN is quite low and on par with IESA and direct NN.
IESA+NN therefore has potential applications in self-adaptive
systems where resource allocation, routing and/or admission
control are adjusted on a periodic basis, whereas simulation
would take too long for such purposes. Additionally, since
IESA+NN differs from IESA only in the introduction of
tuning parameter τ , it can be applied to a wide range of
scenarios where IESA has already been applied.

Finally, promising results were also obtained for the appli-
cation of IESA+NN to NH-OLSs with non-Poisson inputs
and non-exponential service times, although further research
is desirable to further increase accuracy and robustness.
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