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Abstract—We propose a versatile cross-layer framework to
analyze performance metrics for mobile traffic in fifth-generation
(5G) millimeter wave (mmWave) networks. Our proposed frame-
work is based on stochastic geometry, teletraffic models, and
the classical Erlang Fixed Point Approximation method, with
the objective of evaluating blocking probability, mean service
time of user requests, and utilization rate of base stations by
taking into account practical concerns in mmWave networks
including blockages encountered by mmWaves in the physical
layer, capacity constraints in the network layer, and the stochastic
nature of mobile traffic. We demonstrate by numerical results
that our analytical method is accurate and computationally-
efficient.

Index Terms—Millimeter wave (mmWave) networks, cross-
layer analytical framework, performance analysis, teletraffic
model, fixed-point approximation.

I. INTRODUCTION

Academia and industry have been turning to the under-
utilized millimeter wave (mmWave) bands (30–300 GHz)
to address the current scarcity of wireless broadband spec-
trum [1]. Broadband transmission in the mmWave bands en-
ables fifth-generation (5G) wireless networks to meet stringent
throughput, reliability and latency requirements [2]. However,
it also poses new challenges, as the weak penetration and
diffraction of mmWave radio propagation makes it susceptible
to physical blockages [3]. This problem is exacerbated in
densely populated urban areas where pedestrians, vehicles
or buildings would frequently block the line-of-sight (LoS)
or low-order reflection paths between the base station (BS)
and mobile users (MUs). Because of the weak propagation
and penetration abilities of mmWave, mmWave BSs will
be deployed to form small cells [4]. However, due to the
increasing amount of network traffic, limited capacity at each
small cell makes the system vulnerable to capacity-limited
blocking. Both physical blockages and capacity limits may
lead to connection failures between BSs and MUs [1]. The
connectivity issue adversely affects user experience, which
can be quantitatively measured by Quality of Service (QoS)
metrics such as blocking probability, which is defined as the
ratio of user requests that cannot be served by any BS due
to either physical layer blockage (PLB) or capacity-limited
blocking (CLB).

Intuitively, deploying more BSs reduces both PLB and
CLB. However, over-deployment of BSs leads to unnecessary
deployment cost and low utilization rate of deployed BSs. The
latter is more significant in 5G use cases, such as Augmented
Reality (AR), machine type communications or industrial
automation, where the traffic requiring reliable transmissions
are usually sporadic. As 5G covers a wide range of such
new use cases that require reliable transmissions, accurate
evaluations of the blocking probability, mean service time of
MU requests, and utilization rate are necessary for mobile
network operators to make planning, design, dimensioning
and operational decisions, such as BS deployment [5], BS
sleeping [6] and resource reservation [7], to improve network
performance or reduce power consumption. As a large number
of evaluations of different configurations are required in such
applications, computationally-efficient analytical methods are
usually preferred over straightforward but time-consuming
computer simulations, especially when the scale of the con-
sidered network is large.

PLB in terms of path blockage probability in urban
mmWave networks has been analytically characterized for the
LoS [8] and first-order reflection [9] paths based on stochastic
geometry. On the other hand, teletraffic models can be applied
to capture the stochastic dynamics of network traffic to address
CLB and other network-layer performance metrics in mobile
wireless networks. Particularly, appropriate queue size thresh-
olds were derived in [10] for load sharing in an integrated
wireless network by modeling a wireless channel as a finite-
buffer M/G/1/k queue. In [11], closed-form expressions were
obtained for evaluating the mean energy consumption and
mean request service time in a BS for different BS sleeping
schemes based on a single vacation queue model.

The stringent QoS requirement of 5G applications makes
BS-cooperative association and scheduling necessary in the
case of PLB or CLB [2]. For example, if physical obstacles
such as pedestrians and vehicles block the transmission path
between an MU and a BS for a relatively long time compared
to the latency requirement of an MU request, it is impossible
for the MU to wait for the path to clear in order to transmit
to the BS. Instead, such requests should be directed to other
nearby BSs for service. This creates interaction of traffic in
different BSs and invalidates single-server queuing models as
in [10] and [11] for the purpose of performance evaluation.978-1-7281-4846-5/20/$31.00 c©2020 IEEE
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In this paper, we propose a cross-layer analytical framework
that accounts for both PLB in the physical layer and CLB in
the network layer to evaluate the blocking probability, mean
service time of MU requests and utilization rate based on
stochastic geometry, teletraffic theory, and the classical and
computationally-efficient Erlang Fixed Point Approximation
(EFPA) method [12]–[14], providing further insight into re-
search involving these measurements in such networks. With
the integration of these tools, our method can capture the
dynamics of stochastic network traffic, as well as important
features of 5G mmWave networks including PLB and CLB,
and a dynamic user association mechanism that determines
the BS to serve an MU request based on the states of the
BSs upon the arrival of the request. The fundamental queuing
model used in this paper is the M/G/k/k queue, which is
an appropriate model for wireless networks with Orthogonal
Frequency Division Multiplexing (OFDM) [15], a classical
modulation method that is expected to be applied in 5G
networks as well [16].

To the best of our knowledge, there are no existing an-
alytical methods that can accurately and efficiently address
the blocking constraints in both the physical and network
layers, thus capturing both PLB and CLB in a mmWave
network with dynamic user association mechanisms, while
performance evaluation by simulation is too slow for practical
large-scale 5G networks. Therefore, the main contribution of
our proposed cross-layer analytical framework is to provide
a comprehensive, computationally-efficient and realistic eval-
uation of the utilization rate and blocking probability in 5G
mmWave networks, which may in turns lead to useful insights
in network planning, dimensioning, and optimization for such
networks.

II. SYSTEM MODEL

We consider a 2D multi-BS network and denote the set of
BSs as U = {1, 2, ..., U}. Each BS i ∈ U is deployed at a
known location with coordinates (xi, yi), and has a finite ca-
pacity of ci. By “capacity”, we mean that the radio resources in
BS i are allowed to serve at most ci MU requests concurrently.
This guarantees that sufficient radio resources can be allocated
to each admitted MU request such that their reliability and
latency requirements can be satisfied, since a large value of ci
means more requests may be admitted simultaneously, leading
to less radio resources for each request and therefore higher
average latency. We focus on downlink delay-sensitive traffic
generated by the applications mentioned in Section I, such
that a finite capacity is necessary to guarantee that sufficient
amount of radio resources can be allocated to each admitted
request. We also consider that such delay-sensitive traffic is
always given preemptive priority over delay-tolerant traffic
for transmission, such that the transmission of delay-sensitive
traffic is never affected by the existence of delay-tolerant
traffic. The utilization rate of a BS is defined as the time-
average proportion of the occupied capacity.

We further assume that MU requests are generated accord-
ing to a spatio-temporal Poisson Point Process (PPP). Each

BS i ∈ U covers a circular area with a radius of Di. As the
delay-sensitive traffic is usually composed of small packets
and thus the transmission time of a single request is relatively
short [2], we can assume that, for the duration of an MU
request, both the MU itself and the obstacles remain static. As
a consequence, there is no disruption due to physical blockage
once a connection between a BS and an MU is established.
Finally, we consider that the physical blockages experienced
by a link are independent [8], [9].

A. Physical Layer: Stochastic Geometry and PLB

As discussed in Section I, mmWave transmission is inher-
ently susceptible to physical link blockages. Therefore, the
effective arrival rate of MU requests at BS i depends on both
the generation rate of requests, and physical layer parameters
such as the spatial distribution of the BSs and obstacles.

As in [8], we assume that the obstacles are impenetra-
ble rectangles with independently and identically distributed
(i.i.d.) lengths and widths with means E [L] and E [W ], re-
spectively, and with center points generated by a homogeneous
PPP with density λb. Therefore, the total number of obstacles
blocking an LoS path with length d is Poisson distributed
with mean βd + p, where β = 2λb(E [L] + E [W ])/π and
p = λbE [L]E [W ] are two parameters related to the size and
density of the obstacles. In this paper, we consider only LoS
transmissions, thus the PLB probability between BS i and
a location with coordinate z = (xz, yz) is equivalent to the
probability that at least one obstacle is present across the LoS
path, namely

BB(i, z) =

{
1− exp [− (βd (i, z) + p)] if d (i, z) ≤ Di;

1 if d (i, z) > Di,
(1)

where d(i, z) is the Euclidean distance between BS i and z [8],
and Di is the radius of the BS’s coverage region. Note that
the PLB is dependent on the distance between the MU and
BS alone and not on the absolute coordinates.

Let λ(i, z) denote the intended arrival rate from coordi-
nate z to BS i. The total intended arrival rate for BS i is
λi =

∫
Ri
λ (i, z) dz, where Ri = {z|d(i, z) ≤ Di} is the

set of locations within the coverage region of BS i. However,
MU requests encountering PLB will not be able to establish a
connection with the BS and thus do not contribute to the traffic
offered to the BS. The effective arrival rate for BS i, after
encountering PLB, is λ∗i =

∫
Ri
λ (i, z) (1−BB (i, z)) dz.

We define a candidate BS for a given MU request as any
BS covering the location of the MU initiating the request. As
the coverage of BSs may overlap, multiple candidate BSs are
possible for a single request, and a request may be served by
(associated to) any single candidate BS. We define fresh traffic
as all requests making their first attempt to a candidate BS. If
the attempt is not successful due to either PLB or CLB, the
request will attempt (overflow to) another candidate BS that
it has not attempted. This process continues until 1) the MU
successfully connects to a BS and begins its service, or 2) the
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request is rejected by all candidate BSs and leaves the network
unserved. We further define overflow traffic as all requests that
have attempted and been rejected from at least one BS. By
definition, λ∗i only includes fresh traffic.

Denoting the average transmission power of BS i to a
single MU request as Pi, the received power of a request at
coordinate z from BS i, when PLB does not occur, is

Pr (i, z) = gd (i, z)
−α

Pi, (2)

where g is a parameter reflecting the beamforming gain and
small-scale fading effect, and α is the path loss exponent. The
received power is 0 if PLB occurs.

For now, we ignore the reflection paths transmissions and
dependencies among the paths as the focus of this paper is
on the cross-layer modeling and performance evaluation of
mmWave networks. The impact of reflection paths on overall
network performance can be incorporated to our framework
by replacing (1) with relevant analysis (e.g. [9]) to obtain the
PLB, and consider a different loss-path exponent for reflection
paths in (2) for calculating the received power.

B. Network Layer: Teletraffic Models and CLB
Assume that the number of data bits requested to transmit

by each MU request in the network, Φ, is i.i.d. following a
general distribution with mean E [Φ], independent of time or
location. Let kz denote the set of candidate BSs for location z,
which depends on the location and coverage of each BS. We
consider that each BS will cause interference to MU requests
within its coverage but served by other BSs, and consider
the upper bound on the level of interference for each MU
request, where each potential beam from an interfering BS
aims directly at the MU making the request, such that the
interference is maximized. We compute the data rate for a
request generated by an MU at location z served by BS i by

r̄ (i, z) = N log2

[
1 +

Pr(i, z)

N0 +
∑j 6=i
j∈kz Pr(j, z)

]
, (3)

where N0 is the thermal noise, and N is the bandwidth equally
allocated to each request. The last term in (3) is the average
SINR experienced by such requests.

The mean service time (referred as mean holding time or
delay in some other research, which is defined as the time
elapsed from the moment when an MU initiates a request to
the moment when the MU received the last required bit from
the BS) of all requests connected to BS i is the ratio of the
average number of data bits per request to the mean data rate,
namely

t̄i =
1

λ∗i

∫
Ri

λ (i, z) (1−BB (i, z))E [Φ]

r̄(i, z)
dz. (4)

In this sense, BS i can be modeled as an M/G/ci/ci queue
with mean arrival rate of requests λ∗i and mean service rate
of requests µ̄i = 1/t̄i, where the service time follows a
general distribution 1. We assume OFDM transmission such

1The M/D/k/k and M/M/k/k queues discussed in [2] for ultra-reliable low-
latency traffic are special cases of the M/G/ci/ci queue described in this paper,
with deterministic and exponential distributions of service times respectively.

that intra-cell interference is eliminated. It was also mentioned
in existing work such as [15] and [17] that loss systems like
M/G/ci/ci queues are appropriate models for wireless networks
with OFDM-FDMA and OFDM-TDMA transmissions. As
discussed previously, by limiting the value of ci, the network
can provide delay guarantees.

When an MU initiates a request for transmission, it will
begin by attempting a candidate BS. The order by which the
request attempts its candidate BSs is determined by a user
association strategy. If the request does not experience PLB
during the attempt, it will examine whether the candidate BS
has already reached the maximum capacity. If so, the incoming
request will be rejected by the candidate BS due to CLB.

If we define Ai = λ∗i /µ̄i as the effective offered traffic
in Erlangs to BS i, the CLB probability is equivalent to the
probability that there are ci requests served in the BS, i.e.,
when the BS is “full" and has to reject a newly-initiated request
for admission. By the Erlang B formula, this can be calculated
as

BC (Ai, ci) =

A
ci
i

ci!
ci∑
y=0

Ay
i

y!

. (5)

Note that in an M/G/ci/ci queue, the mean service time
and blocking probability are insensitive to the distribution of
Φ [18]. Additionally, since the queue has a finite buffer, the
system is stable even when the arrival rate is greater than the
service rate.

The utilization rate for BS i is given by [18]

Ûi =
(1−BC (Ai, ci))Ai

ci
. (6)

Without overflow traffic among candidate BSs, we can cal-
culate blocking probability, mean service time and utilization
rate for each BS individually by the above equations. However,
overflow traffic is an intrinsic feature of wireless networks
with dynamic user association mechanisms, which is essential
for mmWave networks as discussed in Section I. Therefore,
capturing overflow traffic is crucial for the accurate evaluation
of blocking probability, mean service time and utilization rate
in such networks. Such evaluation requires analysis of traffic
interaction among a network of BSs, which is provided in the
next section.

III. PERFORMANCE EVALUATION

In this section, we apply EFPA to address the overflow
traffic. By integrating EFPA with our analysis in the previous
section on PLB and CLB, we propose a novel analytical
framework to evaluate the blocking probability of MU requests
and utilization rate of BSs in urban 5G mmWave networks.

EFPA was initially proposed for approximating the block-
ing probability (CLB in our case) in overflow loss systems
where mutual overflow traffic exists among non-hierarchical
subsystems. The key idea of EFPA is to assume that both
fresh and overflow traffic are Poisson, and decompose the
entire system into independent Erlang B subsystems, with each
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server group as a subsystem. Kelly [12] suggested that EFPA
can be applied in cellular networks with channel borrowing
capabilities, where the entire network is a system while each
BS is an independent subsystem. The concept of channel
borrowing is still applicable in modern cellular networks, in-
cluding 5G mmWave networks, with dynamic user association
mechanisms [14]. It is noted that there is some room for
improvement on the accuracy of EFPA when the blocking
probability is lower than 1% [13], [14], [19]. However, as
the PLB in a typical mmWave network is around 10% [8],
which constitutes the lower bound of the overall blocking
probability, the original EFPA is sufficient in estimating the
overall blocking probability (PLB and CLB combined).

For simplicity, in this paper we will use the Shortest
Distance First (SDF, or equivalently the Smallest Path-Loss
First) user association mechanism, in which a request attempts
candidate BSs in an increasing order of distance. This mech-
anism favors a BS that can offer the highest signal power
to the MU that initiates the request, and is considered as a
state-of-art benchmark in literature [20]. In the rest of the
section, we apply EFPA to evaluate the blocking probability
and mean service time under the SDF mechanism. However,
the proposed analytical framework is general and can apply to
other user association mechanisms as well.

We start by defining the following:
• ∆: the sequence of attempted candidate BSs of an MU

request. |∆| is the number of candidates that the request
has attempted;

• Sz,n = {sz,1, ..., sz,n}: the sequence of the n closest BSs
to location z, with sz,1, ..., sz,n ∈ U and d(sz,1, z) ≤
d(sz,2, z) ≤ ... ≤ d(sz,n, z);

• a′z,n: Intended offered traffic for BS sz,n from location z
with ∆ = Sz,n−1 and |∆| = n− 1;

• az,n = a′z,n (1−BB (sz,n, z)): Effective offered traffic,
after accounting for PLB, to BS sz,n from location z with
∆ = Sz,n−1 and |∆| = n− 1;

• ai,n =
∫
Ri
az,ndz: Effective offered traffic to BS i with

|∆| = n− 1, summing over all possible locations z with
Sz,n = i;

• λi,n: Arrival rate to BS i with |∆| ≤ n. By definition,
λi,0 = λ∗i is the arrival rate of the fresh traffic offered to
BS i;

• Ai,n =
n∑
j=0

ai,j : Effective offered traffic to BS i with

|∆| ≤ n;
• vz,n: Overflow traffic from BS sz,n, offered from location

z, with ∆ = Sz,n and |∆| = n;
Given Ai,U−1, the blocking probability at BS i is bi =
BC (Ai,U−1, ci) can be obtained by the Erlang B formula as

bi = BC (Ai,U−1, ci) =

A
ci
i,U−1

ci!
ci∑
y=0

Ay
i,U−1

y!

, (7)

as any single request is allowed to overflow at most U − 1
times. A request will be blocked and leave the network without

being served when it is rejected by the U -th candidate BS.
The overflow traffic with |∆| = n from BS sz,n is

vz,n = az,nbsz + a′z,nBB(sz,n, z) (8)

for n < U . In (8), the first term represents the overflow traffic
when an incoming request with |∆| = n − 1 finds BS sz,n
fully occupied with other requests in service. The second term
represents the overflow traffic due to PLB, is unique to the
mmWave network model in this work. The overflow traffic
vz,n adds sz,n in the attempted sequence and thus increase
|∆| by 1, and will be offered to the next closest unattempted
candidate BS sz,n+1 as a′z,n+1. After accounting for different
data rates offered by sz,n+1 and sz,n, we have

a′z,n+1r̄(sz,n+1, z) = vz,nr̄(sz,n, z), (9)

for n < U − 1. For any n ≥ U − 1, a′z,n+1 = 0. By (7)
to (9), we can iteratively calculate the CLB probability for
requests with |∆| = n and the amount of overflow traffic with
|∆| = n+ 1 at each BS, starting with the initial values ai,0 =
Ai,0 = λi,0/µ̄i. Due to the circular dependencies between
az,n, vz,n and bi as in (7) to (9), a fixed-point iteration is
needed to determine their values [12]–[14], [19].

After the fixed-point solutions for Ai,U−1 and bi are ob-
tained for every i ∈ U , the overall blocking probability of the
network can be computed as

B̂ = 1−
∑
i∈U Ai,U−1 (1− bi)∑

i∈U (λi/µ̄i)
, (10)

where
∑
i∈U (λi/µ̄i) is the total intended offered traffic for all

BSs in the network, and Ci = Ai,U−1 (1− bi) is the carried
traffic of BS i (which includes all the traffic with smaller |∆|
by definition). The network throughput, or total carried traffic,
is
∑
i∈U Ci. For an individual BS i, the total effective offered

traffic Ai,U−1 and the CLB probability bi can also be obtained.
Taking overflow traffic into consideration, the utilization

rate of BS i is calculated by replacing Ai with Ai,U−1 and
BC (Ai, ci) with bi in (6), that is,

Û ′i =
(1− bi)Ai,U−1

ci
. (11)

The utilization rate of the network is the weighted average
of the utilization rate of each BS, namely,

Û ′ =

∑
i∈U

ciÛ ′i∑
i∈U

ci
(12)

The mean service time of requests is also affected by
the overflow traffic, as requests may be served by further
BSs and thus experience a lower mean data rate. For an
individual BS i, the mean service time can be calculated
from the total effective offered traffic Ai,U−1 and the CLB
probability bi obtained by the above iterative process. Specif-
ically, the mean service time of requests served by each
BS is obtained by Little’s Law as E [ti] = E [Qi] /λi,U−1,
where E[Qi] =

∑ci
x=1 x(Axi,U−1/x!)/

∑ci
y=0(Ayi,U−1/y!) is
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the average number of requests (i.e., the mean queue size of
an M/G/ci/ci queue with offered traffic Ai,U−1) at BS i [18].
For the network, the mean service time is

E[t] =

∑
i∈U

λi,U−1(1− bi)E[ti]∑
i∈U

λi,U−1(1− bi)
. (13)

EFPA-based methods have been demonstrated to be com-
putationally efficient [13], [14], [19]. We will report the
improvement in running time of EFPA over simulation along
with the accuracy of EFPA in the next section.

IV. NUMERICAL RESULTS

We consider two different BS layouts for a network with
dimensions 500 m × 500 m. The first layout contains 16 BSs
deployed in a rectangular grid and the other contains 30 BSs
with locations randomly generated, as shown in Fig. 1. For the
ease of demonstration, we assume, without loss of generality,
that the network is discretized into 1 m× 1 m grids so that xz
and yz are all integers. We set g = 1, α = 3, N = 1 GHz,
N0 = −90 dBm, and let Φ follows an exponential distribution
with E [Φ] = 500 Mbits. We generate a set of random
obstacles in each layout, with E[W ] = 1 m, E[L] = 4 m, and
λb = 0.003. We further assume homogeneous offered traffic in
each grid, denoted as λ (z) = λ/ (500× 500), where λ is the
generation rate of requests per second in the whole network.
Additionally, we set the radius of coverage the same for all BSs
in the network, denoted by D = Di = 100 m for all i ∈ U .
The maximum number of requests allowed is ci = c = 50,
and the average transmit power is Pi = P = 30 dBm.

We perform discrete-event simulations [21] by MATLAB
to obtain simulation results. The locations of BSs are fixed
in all simulation runs. The 95% confidence intervals for all
simulation results presented in this section, based on Student’s
t-distribution, are within 1% of the observed mean.

(a) (b)

Figure 1. Network layout with (a) 16 BSs deployed in a rectangular grid; (b)
30 BSs with randomly generated locations.

Simulation and analytical results for blocking probability,
mean service time and utilization rate derived from Section III
are presented in Fig. 2 for the rectangular BS layout and Fig. 3
for the random BS layout.

As shown in both Figs. 2a and 3a, when the arrival rate
is low, the probability of CLB is very small. The network is
considered to be within the PLB-constrained regime where the

blocking probability is approximately equal to the probability
of PLB (around 20% in both cases and not dependent on the
arrival rate). This is the only case considered in most existing
studies on physical layer blockage (e.g. [8], [9]). However,
as the arrival rate increases, the network will move to the
mixed regime where both PLB and CLB are significant, due
to the finite capacities of BSs. In this case, blocking proba-
bility evaluations only based on PLB will underestimate the
overall blocking probability of the network. As 5G networks
are expected to accommodate large volume of traffic, this
scenario cannot be ignored. Such underestimations may lead
to inaccurate formulation and solution of relevant problems.

In the mixed regime where the CLB is significant, the mean
service time also increases as the arrival rate increases in both
layouts as shown in Figs. 2b and 3b. This is because that MU
requests are more likely to overflow to further BSs for service
under heavy traffic condition, resulting in a lower data rate
and thus a longer mean service time.

For the network with rectangular BS layout as shown in
Fig. 2, the relative difference in blocking probability between
EFPA and simulation are within 1.5% for all values of arrival
rates in the considered range. The results indicate that EFPA
provides fairly accurate estimates of blocking probability,
mean service time and utilization rate for the rectangular BS
layout. For the network with random BS layout as shown in
Fig. 3, EFPA gives relatively conservative (higher) estimations
of blocking probability and mean service time compared to
simulation results, which is preferable and often adopted for
design and optimization problems.

The running time of EFPA is, on average, shorter than 10%
that of simulation. This makes EFPA well-suited for network
planning and optimization scenarios where a large number of
network configurations must be compared.

V. CONCLUSION

We propose an accurate and computationally-efficient cross-
layer analytical framework to compute the blocking proba-
bility and mean service time in 5G mmWave networks. We
demonstrate that our results provide reasonable estimates for
the Shortest-Distance-First user association mechanism. The
results obtained by our analytical model based on EFPA will
provide useful insights in network planning, dimensioning,
and optimization. A potential future extension is to integrate
power control and opportunistic user scheduling in our model
to further improve the network performance. Another possible
extension is to apply new approximation methods which are
based on EFPA but have incorporated improvements to address
certain features of specific models (e.g., [13], [14], [19]), to
further increase the accuracy of evaluations.
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(a) (b) (c)

Figure 2. (a) Blocking probability; (b) mean service time; and (c) utilization rate for the network with rectangular BS layout.

(a) (b) (c)

Figure 3. (a) Blocking probability; (b) mean service time; and (c) utilization rate for the network with random BS layout.
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