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Abstract: The competition between pathogens is an essential issue in epidemiology. As the
COVID-19 pandemic persists, new variants mutate resulting in further waves of
infections. In this work, we propose a simple two-variant susceptible-infected-removed-
susceptible (SIRS) model for studying the competitive epidemic processes. We obtain
the global basic reproduction number of our proposed model and show that whether
the epidemic persists or diminishes depends on the more contagious of the two
variants. Furthermore, by studying the stability of the endemic equilibria, given a
specific choice of parameters, we can predict whether either variant will eventually
dominate the competitive epidemic process, or if both variants will persist. Numerical
results show that periodic solutions become viable if the two variants’ cross-infectivities
are unequal, i.e., recovery from one variant offers unequal protection against the other.
In other words, reducing the infectivity of a variant via non-pharmaceutical interventions
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may trigger periodic or even chaotic behavior and paradoxically cause healthcare
demand to increase. Note that our model is sufficiently general so as to be used for
studying competitive behavior in other areas of science.

Response to Reviewers: Response to Reviewers’ Comments
Manuscript Number: NODY-D-23-00815
Original Title: A competitive epidemic model of two variants
Revised Title: Stability analysis of an epidemic model with two competing variants and
cross-infections

Dear Editor,

We hereby submit a revised version of the above-mentioned manuscript previously
submitted to Nonlinear Dynamics. The changes in the revised manuscript are
highlighted. We would like to express our thanks to the reviewers for their efforts to
provide thorough and helpful reviews.

According to the reviewers’ comments, we have substantially changed the revised
paper. In. particular, we found sufficient conditions where two variants coexist. In
addition to sufficient conditions in the original manuscript for the existence and stability
in which only the new variant remains, we now have a more complete theoretical result
in the revised manuscript. Furthermore, we reduce the redundant results and make the
manuscript more focused on the stability analysis. The periodical solutions in numerical
experiments show more unrevealed mysteries in such systems. We will continue our
study to analyze those interesting phenomena in our future work.

In the following, we address each of the reviewers’ comments and provide detailed
responses. The originality of this paper is evident and significant. Therefore, our paper
has immense potential in the field of epidemiology. We hope you find the revised
manuscript worthy of publication in Nonlinear Dynamics.

Best regards,

Eric W. M. Wong for all authors

Reviewers’ comments:
Reviewer #1:
1.The article deals with the mathematical modeling of the spread of two virus variants.
The topic is relevant. The authors proved stability of equilibrium points. The authors did
numerical simulations and studied different scenarios. The presentation must be
improved.
Response:
We greatly appreciate your acknowledgment of our manuscript. We have thoroughly
reviewed and implemented all of the suggestions you provided in order to improve the
quality of our work. Thank you for your valuable input and we hope that you will find the
revised manuscript to be satisfactory.

2.The introduction needs to be improved. There are some references to works that
study the two variants scenarios that have not included. More detailed results about
two variants would help the readers to grasp the novelty of this work.
Response:
We appreciate your diligent scrutiny of our manuscript. As per your suggestions, we
have incorporated additional related works in the introductory section and have
presented a more comprehensive analysis in Section 3. We hope that these revisions
have addressed any concerns you may have had and have enhanced the overall
quality of our work. Thank you for taking the time to review our paper. The main
changes are as follows:
1.In the introduction, we included a paragraph to introduce other works that are based
on two variant models.
“There have been many research publications on the competition dynamics between
two or more disease variants. An early example of such work is [24] (published in
1991), which proposed a simple two-variant SI model with cell division and deaths, but
no recovery. Reference [25] presented a convergence and equilibria analysis of two
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viruses spreading across the same populations with different network structures. In the
case of homogeneous parameters, cases were presented with both a finite number of
equilibria and an infinite number of equilibria along a line. In [26], a two-layer network
model was proposed in which each layer represented the spreading dynamics of the
corresponding virus, such that the two layers share the same nodes (representing
individuals) but may have different edges and/or edge weights (representing
transmission rates between individuals). Generic infection rates were also considered
in [26], i.e., the generic model includes the linear model and ones with nonlinear
infection rates. An analysis of competitive spreading via directed infection graphs in the
SIS model is presented in [27], along with an analysis of equilibria under different
infection rate parameter conditions. References [28] and [29] considered a competitive
epidemic process in a two-layer network to find the optimal allocation of control
resources, yielding necessary and sufficient conditions for the mean-field
approximation of a selected epidemic process to be stabilized to extinction
exponentially.”
“[24] Nowak, M.: The evolution of viruses. competition between horizontal and vertical
transmission of mobile genes. Journal of theoretical biology 150(3), 339–347 (1991)
[25] Ye, M., Anderson, B.D., Liu, J.: Convergence and equilibria analysis of a
networked bivirus epidemic model. SIAM Journal on Control and Optimization 60(2),
323–346 (2022)
[26] Yang, L.-X., Yang, X., Tang, Y.Y.: A bi-virus competing spreading model with
generic infection rates. IEEE Transactions on Network Science and Engineering 5(1),
2–13 (2017)
[27] Liu, J., Par ́e, P.E., Nedi ́c, A., Tang, C.Y., Beck, C.L., Ba ̧sar, T.: Analysis and
control of a continuous-time bi-virus model. IEEE Transactions on Automatic Control
64(12), 4891–4906 (2019)
[28] Watkins, N.J., Nowzari, C., Preciado, V.M., Pappas, G.J.: Optimal resource
allocation for competing epidemics over arbitrary networks. In: 2015 American Control
Conference (ACC), pp. 1381–1386 (2015). IEEE
[29] Watkins, N.J., Nowzari, C., Preciado, V.M., Pappas, G.J.: Optimal resource
allocation for competitive spreading processes on bilayer networks. IEEE Transactions
on Control of Network Systems 5(1), 298–307 (2016)”
2.We have made some updates to our document. Firstly, on page 13, we have
included additional information to Theorem 2 to provide a stable condition for Variant-
1-only EE. Additionally, we have included Section 3.3, which analyzes the coexisting
EE for both variants and presents Theorem 3 to summarize the overall result.
3.The novelty of this work is discussed on page 5.“…… we consider the effect of
mutation, whereby infections of the first variant transform into infections of the second
variant at a given (usually low) rate. As a result, infections of the second variant may
emerge in our model even if the initial state contains only infections of the first variant.
The ability of the new variant to infect individuals recovered from the first variant is
known as immune escape and is a key mechanism in the development of new disease
strains.”
“In particular, we find a set of sufficient conditions for the existence and stability of the
EE in which only the new variant remains and the one where two variants coexist.”

3.The model needs further explanation. For instance, there is waning of immunity for
R1 and R2, but not for people in P. Notice that people from R1 can go to S and from
there can get variant 1 or 2.
Response:
I appreciate your helpful suggestions. Just to clarify, in Figure 1, the arrow points from
P to S, indicating a decrease in P immunity.

4.It seems from Theorem 1 that only one endemic equilibrium point exists. From Fig 2
it is clear that there is co-existence. The results needs much better explanation. Can
variant 2 disappear and variant 1 become endemic? No theorem for this situation?
Response:
We have taken your valuable feedback into consideration and have made significant
modifications to address your concerns. In Section 3, we have included detailed
analyses to offer a thorough comprehension of the subject matter. Specifically, on
page 12, we have supplemented Theorem 2 to provide a stable condition for Variant-1-
only EE. Additionally, we have added Section 3.3 to analyze the coexisting EE for both
variants and have presented Theorem 3 to summarize the outcome. As per Theorem
2, Variant 2 can vanish, and Variant 1 can become endemic. We hope that these

Powered by Editor ial Manager®  and ProduXion Manager®  from  Aries System s Corporat ion



revisions meet your expectations, and we appreciate your time and efforts in reviewing
our work.

5.The discussion needs improvements. Discuss better, when periodic solutions are
obtained. When chaos may occur. A summary Table would be very helpful.
Response:
Thank you for your helpful suggestions. We have made revisions to the discussion
section and included a summary table of our findings. The key modifications are
outlined below.
1.We have added the following contents to page 24, “In Section 3, we investigated the
stability of the model's disease-free equilibrium (DFE), generated sufficient conditions
under which a single Variant endemic equilibrium (EE) is locally asymptotically stable,
and gave the sufficient conditions under which both variants endemic equilibrium (EE)
is globally asymptotically stable.”
2.More content has been added to page 25, “Notably, the existence of periodic or
chaotic behavior in our epidemic model means that a decrease in active cases does
not necessarily signal the end of an epidemic. Additionally, reducing the infectivity of a
variant by implementing non-pharmaceutical interventions can potentially cause such
periodic or even chaotic behavior to emerge, paradoxically increasing healthcare
demand. Therefore, governments and other policymakers must be careful when
introducing epidemic prevention policies.”
3.We have included a summary table on page 9 that outlines our main findings.
“In this section, we prove that conditions can be found where neither, either, or both
variants exist in a stable equilibrium. These equilibria and their conditions are
summarized in Table 2 and described in detail below.”

6.Mention limitations of this study. For instance, no vaccination included.
Response:
We appreciate the reviewer's kind comments and have made the necessary revisions
to the introduction. The main changes can be found on page 25.
“Our work also has some limitations, most notably, the lack of investigations of the
impact of vaccination and the data study on COVID-19 or other infectious diseases.
Furthermore, theoretical analysis of periodical results is not included due to the
difficulty and space limitations. Regarding the model, it is only capable of handling
scenarios involving two viruses, rather than multiple viruses. This forms part of our
future work.”
Reviewer #3:
The results listed in the paper in the form of formulas, figures, and analysis seems true
and correct. The paper is well written and it is written in a truly sporty manner. English
is generally good, I think it needs to be polished further and some typos need to be
revised. Further punctuation marks should be checking through the paper, especially
after the equations and at the end of the statements.

* Remark, comments, and questions:

Title of paper is not clear. Try to clear meaning of the title. The abstract is a little thin
and does not quite convey the vibrancy of the findings and the depth of the main
conclusions. The authors should please extend this somewhat for a better first
impression. The manuscript lacks motivation. Author needs to include the motivation of
the study. Authors should write keywords in professional way.

Response:
Thank you for taking the time to process the submission of our original paper. We have
made accordingly amendments to the paper.
1.We have changed the title to, “Stability analysis of an epidemic model with two
competing variants and cross-infections”
2.We have made the following modification in the abstract, “The competition between
pathogens is an essential issue in epidemiology. As the COVID-19 pandemic persists,
new variants mutate resulting in further waves of infections. In this work, we propose a
simple two-variant susceptible-infected-removed-susceptible (SIRS) model for studying
the competitive epidemic processes. We obtain the global basic reproduction number
of our proposed model and show that whether the epidemic persists or diminishes
depends on the more contagious of the two variants. Furthermore, by studying the
stability of the endemic equilibria, given a specific choice of parameters, we can predict
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whether either variant will eventually dominate the competitive epidemic process, or if
both variants will persist. Numerical results show that periodic solutions become viable
when the two variants’ cross-infectivities are unequal, i.e., recovery from one variant
offers unequal protection against the other. In other words, reducing the infectivity of a
variant via non-pharmaceutical interventions may trigger periodic or even chaotic
behavior and paradoxically cause healthcare demand to increase. Note that our model
is sufficiently general so as to be used for studying competitive behavior in other areas
of science.”
3.We have emphasized the motivation on page 4, “The current situation of coexisting
Omicron subvariants, without a single dominant COVID-19 strain, requires new models
and methodologies to capture the behavior of multiple competing viral strains.”

There is already an abundance of modeling studies on COVID-19, vaccinations, and
the months or years to come. However, apart from Ferguson's (now classic) work,
Moore and Giordano, very little is said about similar modeling works. This is an issue
for three reasons. First, the intended audience for such pieces is made of policy-
makers and the general public: they are already facing an abundance of (occasionally
conflicting) findings from models. If there is no attempt to contextualize the findings
from this piece among others, then we're more likely to be adding noise to a crowded
space, instead of providing valuable guidance. Second, several of the modeling
assumptions made here may be in line with other pieces (which may provide some
strength to the methods) or may be rather unique (which may need more discussion).
Finally, as a piece of scientific literature, the contributions should be situated based on
what already exists. In sum, the authors should explain how each of their assumptions
and modeling choices compares to the literature; how their findings compare to the
literature; and hence what is their specific contribution. Related models include, but are
not limited to:
-
https://urldefense.com/v3/__https://doi.org/10.1016/j.rinp.2021.104285__;!!KjDnqvtInNP
T!h-wDV22Y0qyU7lX1YXxJh0p-
dRqdwd5rGDhPDEg8NrQbIFtB8_6dnhTZHSPW45asH9xFdZaCOQyP9NLb2aar$

--https://urldefense.com/v3/__https://doi.org/10.1007/s12190-021-01507-
y__;!!KjDnqvtInNPT!h-wDV22Y0qyU7lX1YXxJh0p-
dRqdwd5rGDhPDEg8NrQbIFtB8_6dnhTZHSPW45asH9xFdZaCOQyP9OqYxaRH$
--
https://urldefense.com/v3/__https://doi.org/10.1016/j.chaos.2020.110173__;!!KjDnqvtIn
NPT!h-wDV22Y0qyU7lX1YXxJh0p-
dRqdwd5rGDhPDEg8NrQbIFtB8_6dnhTZHSPW45asH9xFdZaCOQyP9LP8wbt8$

--https://urldefense.com/v3/__https://doi.org/10.1063/5.0016240__;!!KjDnqvtInNPT!h-
wDV22Y0qyU7lX1YXxJh0p-
dRqdwd5rGDhPDEg8NrQbIFtB8_6dnhTZHSPW45asH9xFdZaCOQyP9D3BmfKD$

--
https://urldefense.com/v3/__https://doi.org/10.1016/j.chaos.2020.110049__;!!KjDnqvtIn
NPT!h-wDV22Y0qyU7lX1YXxJh0p-
dRqdwd5rGDhPDEg8NrQbIFtB8_6dnhTZHSPW45asH9xFdZaCOQyP9Gd85mGN$
--arXiv:2005.06286v2

--https://urldefense.com/v3/__https://www.researchsquare.com/article/rs-
872671/v1__;!!KjDnqvtInNPT!h-wDV22Y0qyU7lX1YXxJh0p-
dRqdwd5rGDhPDEg8NrQbIFtB8_6dnhTZHSPW45asH9xFdZaCOQyP9AdsNcuh$

-- https://urldefense.com/v3/__https://doi.org/10.1140/epjp/s13360-021-01997-
6__;!!KjDnqvtInNPT!h-wDV22Y0qyU7lX1YXxJh0p-
dRqdwd5rGDhPDEg8NrQbIFtB8_6dnhTZHSPW45asH9xFdZaCOQyP9Dp8FL5W$

-- https://urldefense.com/v3/__https://doi.org/10.1140/epjp/s13360-022-02347-
w__;!!KjDnqvtInNPT!h-wDV22Y0qyU7lX1YXxJh0p-
dRqdwd5rGDhPDEg8NrQbIFtB8_6dnhTZHSPW45asH9xFdZaCOQyP9G_WDOI1$

-- https://urldefense.com/v3/__https://doi.org/10.1007/s11071-022-07235-
7__;!!KjDnqvtInNPT!h-wDV22Y0qyU7lX1YXxJh0p-
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dRqdwd5rGDhPDEg8NrQbIFtB8_6dnhTZHSPW45asH9xFdZaCOQyP9GlARl6n$
Response:
Thank you for your thoughtful suggestions. We have incorporated more relevant works
into the introduction of our paper. Additionally, we would like to clarify that our paper
addresses not only COVID-19 but also provides a comprehensive solution for
managing competitive epidemic processes. Please find below the main changes that
have been made:
“The COVID-19 pandemic has resulted in a massive increase in epidemiological
research publications and preprints, with an early 2022 study finding nearly 10
thousand published COVID-19 papers solely within first-quartile General and Internal
Medicine journals, according to ClarvariateTM [17– 20].”
“[17] Cosentino, N., Marenzi, G., Chiesa, M.: The impact of COVID-19 pandemic on
scientific research: an upcoming new wave? Journal of General Internal Medicine
37(10), 2553–2555 (2022). https://doi.org/10.1007/ s11606-022-07647-6
[18] Khajanchi, S., Sarkar, K.: Forecasting the daily and cumulative number of cases
for the covid-19 pandemic in india. Chaos: An interdisciplinary journal of nonlinear
science 30(7) (2020)
[19] Samui, P., Mondal, J., Khajanchi, S.: A mathematical model for covid-19
transmission dynamics with a case study of india. Chaos, Solitons & Fractals 140,
110173 (2020)
[20] Mondal, J., Khajanchi, S.: Mathematical modeling and optimal intervention
strategies of the covid-19 outbreak. Nonlinear Dynamics 109(1), 177–202 (2022)”
Some other questions:

1.Is there any experimental data to validate the mathematical model? The authors at
least describe the basic reproduction number R_0 and its impact on covid-19
pandemic. The basic reproduction number R_0 is one of the most crucial quantities in
infectious diseases, as R_0 measures how contagious a disease is. In this context the
authors include the reference "Mathematical analysis of the global dynamics of a
HTLV-I infection model, considering the role of cytotoxic T-lymphocytes, Math.
Comput. Simul. 180(2021) 354-378", "Dynamics of an HTLV-I infection model with
delayed CTLs immune response, Appl Math Comput 2022"
Response:
Thank you for taking the time to carefully read our manuscript. In Section 4, we
conducted a significant number of numerical experiments and validated the theoretical
results presented in Section 3. However, we plan to extend our research in future work
and include studies on real data analysis. The main changes we have made are as
follows:
We made some updates to our report on page 12. Specifically, we added information
about the stable condition for Variant-1-only EE in Theorem 2. Additionally, we
included a new section, 3.3, which analyzes the coexisting EE for both variants and
presents a summary of the findings in Theorem 3.

2.Authors should insert all figures in appropriate places.
Response:
Thank you for your valuable suggestions. We have made the necessary changes to
the figures as per your recommendations.

3.Conclusion should be written in a more clear way. So try to short it and write in a
professional way.
Response:
Thank you for your suggestions. We have taken them into consideration and made
some adjustments to the conclusion. The main changes are as follows:
“This paper studied a competitive epidemic process with two variants based on the
susceptible-infected-removed-susceptible (SIRS) model. The global basic reproduction
number $R_0$ was derived, demonstrating that the more contagious variant of the two
determined the threshold of whether the epidemic would persist or fade. Furthermore,
by studying the stability of the endemic equilibrium, we obtain the conditions under
which the newly introduced variant may completely replace the original variant. Based
on theoretical and numerical results, we can predict which variant (or both) will survive
the long-term evolution of the epidemic. We also performed numerical analysis on the
effect of different first- and cross-exposure infectivities on the evolution of the epidemic
model and demonstrated that periodic or chaotic behavior can emerge in some cases,
especially when the cross-exposure infectivities of the two variants are unequal.
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Finally, note that our proposed model is general enough to be applied to fields beyond
infectious disease epidemiology in future work.”

4.Analysis is missing in paper so add it.
Response:
    We appreciate the reviewer's kind remarks and have included additional analysis in
Section 3.

5.Authors should improve the English of paper.
Response:
We appreciate your kind suggestions and we have amended the manuscript
accordingly.

6.Authors should correct grammatical error at few stage of paper.
Response:
Thank you for your thoughtful suggestions. We have made the necessary changes to
the manuscript based on your input.

7.Presentation of paper should be improved.
Response:
We greatly appreciate your valuable suggestions. After carefully reviewing the
manuscript, we have implemented some adjustments based on your feedback. We
have streamlined certain sections and refined the discussion portion accordingly.
Thank you again for your insightful comments. The key modifications are outlined
below.
4.We have added the following contents to page 24, “In Section 3, we investigated the
stability of the model's disease-free equilibrium (DFE), generated sufficient conditions
under which a single Variant endemic equilibrium (EE) is locally asymptotically stable,
and gave the sufficient conditions under which both variants endemic equilibrium (EE)
is globally asymptotically stable.”
5.More content has been added to page 25, “Notably, the existence of periodic or
chaotic behavior in our epidemic model means that a decrease in active cases does
not necessarily signal the end of an epidemic. Additionally, reducing the infectivity of a
variant by implementing non-pharmaceutical interventions can potentially cause such
periodic or even chaotic behavior to emerge, paradoxically increasing healthcare
demand. Therefore, governments and other policymakers must be careful when
introducing epidemic prevention policies.”
6.We have included a summary table on page 9 that outlines our main findings.
“In this section, we prove that conditions can be found where neither, either, or both
variants exist in a stable equilibrium. These equilibria and their conditions are
summarized in Table 2 and described in detail below.”

8.Try to reduce similarity of work.
Response:
Thank you for your helpful suggestions. We have taken them into consideration and
removed some similar search results accordingly.

9.References list are not appropriate.
Respond:
We appreciate your kind suggestions and we have updated the references as required.
“[18] Khajanchi, S., Sarkar, K.: Forecasting the daily and cumulative number of cases
for. the covid-19 pandemic in india. Chaos: An interdisciplinary journal of nonlinear
science 30(7) (2020)
[19] Samui, P., Mondal, J., Khajanchi, S.: A mathematical model for covid-19
transmission. dynamics with a case study of india. Chaos, Solitons & Fractals 140,
110173 (2020)
[20] Mondal, J., Khajanchi, S.: Mathematical modeling and optimal intervention
strategies. of the covid-19 outbreak. Nonlinear Dynamics 109(1), 177–202 (2022)”

Order of Authors (with Contributor Roles): Ruiwu Niu (Conceptualization: Lead; Formal analysis: Lead; Methodology: Lead;
Software: Lead; Visualization: Lead; Writing – original draft: Lead)

Yin-Chi Chan (Visualization: Supporting; Writing – original draft: Supporting; Writing –
review & editing: Supporting)
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Simin Liu (Formal analysis: Supporting; Writing – original draft: Supporting; Writing –
review & editing: Supporting)

Eric W. M. Wong (Supervision: Lead; Writing – review & editing: Supporting)

Michael Antonie van Wyk (Conceptualization: Supporting; Formal analysis: Supporting;
Methodology: Supporting; Supervision: Supporting; Writing – review & editing:
Supporting)
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Abstract

The competition between pathogens is an essential issue in epidemiology.
As the COVID-19 pandemic persists, new variants mutate resulting in
further waves of infections. In this work, we propose a simple two-variant
susceptible-infected-removed-susceptible (SIRS) model for studying the
competitive epidemic processes. We obtain the global basic reproduction
number of our proposed model and show that whether the epidemic per-
sists or diminishes depends on the more contagious of the two variants.
Furthermore, by studying the stability of the endemic equilibria, given a
specific choice of parameters, we can predict whether either variant will
eventually dominate the competitive epidemic process, or if both variants
will persist. Numerical results show that periodic solutions become viable
if the two variants’ cross-infectivities are unequal, i.e., recovery from one
variant offers unequal protection against the other. In other words, reduc-
ing the infectivity of a variant via non-pharmaceutical interventions may
trigger periodic or even chaotic behavior and paradoxically cause health-
care demand to increase. Note that our model is sufficiently general so
as to be used for studying competitive behavior in other areas of science.
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2 Nonlinear Dynamics

1 Introduction

After three years since the start of the COVID-19 pandemic, caused by the

SARS-CoV-2 virus, the disease is widely expected to become endemic [1, 2].

New variants of the virus have become less pathogenic, while the proportion

of asymptomatic cases has increased [1]. In particular, the Omicron variant

of SARS-CoV-2 is associated with higher infectivity but lower disease severity

compared to the Delta variant, with a lower in-hospital mortality rate despite

high-risk groups, e.g., the elderly, forming a higher proportion of admissions [3].

However, the risk of new COVID-19 variants with increased lethality

remains, due to continuing viral mutation. Therefore, the epidemiological

study of such competing disease variants is essential to predict the future

evolutionary behavior of COVID-19 and potential future epidemics. Fur-

thermore, a general model of competitive evolution may have additional

potential applications within and beyond epidemiology, e.g., the spreading of

information/disinformation [4, 5], sentiment, and malware [6].

1.1 Early studies

Ross [7] first developed the concept of thresholds for disease transmission

based on mathematical models of malaria transmission between humans and

mosquitoes. The methodology was further developed in [8–10] in collabora-

tion with Hudson. Subsequently, Kermack and McKendrick [11] developed the

susceptible-infected-removed (SIR) compartmental model, forming the founda-

tion for modern models of infectious diseases. In the SIR model, it is assumed

that recovered individuals obtain permanent immunity from re-infection; later,

the SIS and SIRS models were proposed for the cases where recovery pro-

vides no immunity and time-limited immunity, respectively. Another related
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model is the susceptible-exposed-infected-recovered (SEIR) model [12], where

exposed individuals undergo a latent period before becoming infectious.

Associated with epidemiological models is the concept of the basic repro-

duction number R0, representing the expected number of secondary infections

caused by an infectious individual in a fully susceptible population. This

concept was formally introduced and coined by MacDonald in [13] where it

was recognized that an R0 value below one indicates a disappearing disease

whereas a value above one indicates a persisting disease. Hethcote [12] later

proved that for an SIRS model with a basic reproduction number greater than

one, the proportion of individuals in each compartment eventually reaches an

equilibrium.

Notably, R0 is a function of the disease and of human behavior, and can

therefore be reduced via (for example) social distancing measures [14]. Sur-

veys on the taxonomy and stability analysis of compartmental epidemiological

models include [12, 15].

1.2 Related work

The COVID-19 pandemic has resulted in a massive increase in epidemiolog-

ical research publications and preprints, with an early 2022 study finding

nearly 10 thousand published COVID-19 papers solely within first-quartile

General and Internal Medicine journals, according to ClarvariateTM [16–

19]. One compartmental model developed for the study of COVID-19 is a

susceptible-exposed-infected-hospitalized-removed (SEIHR) model [20]. This

SEIHR model was shown to accurately model the third wave of the COVID-

19 outbreak in Hong Kong and other regions. A stochastic version of the

SEIHR model was subsequently proposed, while the effect of vaccination
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was incorporated into the model, yielding a susceptible-vaccinated-exposed-

infected-hospitalized-removed (SVEIHR) model [21]. As of the beginning of

August 2023, the most prevalent variants of COVID-19 in the United States

are EG.5 and XBB.1.16, with no variant exceeding 25 % of all sequenced cases

[22]. The current situation of coexisting Omicron subvariants, without a sin-

gle dominant COVID-19 strain, requires new models and methodologies to

capture the behavior of multiple competing viral strains.

There have been many research publications on the competition dynamics

between two or more disease variants. An early example of such work is [23]

(published in 1991), which proposed a simple two-variant SI model with cell

division and deaths, but no recovery. Reference [24] presented a convergence

and equilibria analysis of two viruses spreading across the same populations

with different network structures. In the case of homogeneous parameters,

cases were presented with both a finite number of equilibria and an infinite

number of equilibria along a line. In [25], a two-layer network model was

proposed in which each layer represented the spreading dynamics of the cor-

responding virus, such that the two layers share the same nodes (representing

individuals) but may have different edges and/or edge weights (representing

transmission rates between individuals). Generic infection rates were also con-

sidered in [25], i.e., the generic model includes the linear model and ones with

nonlinear infection rates. An analysis of competitive spreading via directed

infection graphs in the SIS model is presented in [26], along with an analysis of

equilibria under different infection rate parameter conditions. References [27]

and [28] considered a competitive epidemic process in a two-layer network

to find the optimal allocation of control resources, yielding necessary and

sufficient conditions for the mean-field approximation of a selected epidemic

process to be stabilized to extinction exponentially.
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1.3 Contributions of this study

This paper considers a version of the SIRS model with two competing variants.

We assume that individuals can be only infected by one variant of the disease at

a time; however, individuals having recovered from one disease variant remain

susceptible to the other variant. Unlike existing compartmental models with

two variants [23–26], we consider the effect of mutation, whereby infections

of the first variant transform into infections of the second variant at a given

(usually low) rate. As a result, infections of the second variant may emerge in

our model even if the initial state contains only infections of the first variant.

The ability of the new variant to infect individuals recovered from the first

variant is known as immune escape and is a key mechanism in the development

of new disease strains.

Next, we analyze the stability of disease-free (DFE) and endemic (EE)

equilibria of our proposed model and derive an expression for the global basic

reproduction number. In particular, we find a set of sufficient conditions for

the existence and stability of EEs in which only the new variant remains and

ones where two variants coexist. This enables us to predict, for a given set of

model parameters, whether both variants of the disease will die out, only the

new variant will persist, or both variants will coexist.

Subsequently, we present a number of numerical analyses of our proposed

model under various conditions. Of particular interest is the effect of first-

exposure versus cross-exposure infectivity on the competitive epidemic process.

Numerical results demonstrate that under certain conditions, the proportion

of each variant among the active cases of the epidemic may exhibit oscillatory

behavior. It has previously been shown that under certain conditions, compe-

tition between two viral strains can lead to oscillatory behavior [29, 30]. The
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ability to predict such oscillatory behavior will allow hospitals to prepare for

the resultant surges in healthcare demand.

2 Model Formulation

To study the competitive epidemic process of two variants, we assume that each

variant alone follows the evolutionary rules of the standard SIRS model. This

assumption will simplify the formulation of our combined model. Consider an

open system with a natural birth rate of b and a per-capita natural death rate

of d. We shall assume that the birth rate is constant and thus independent of

the population size. Let Variant 1 be the original variant in the system. During

the epidemic process, infections of Variant 1 will mutate into infections of a

new variant, namely Variant 2, with rate m. Subsequently, both variants will

compete with each other in the epidemic process.

We define “first” infections to mean infections in fully susceptible individ-

uals with no immunity to either variant of the disease, i.e. either they were

never previously infected or any immunity gained previously has been lost.

Additionally, we shall use the term cross-infections to denote the case where

an individual with immunity to one disease variant is infected by the other

variant. Our model thus contains the following compartments:

• Fully susceptible (S)

• First-exposure infected by Variant i (Ii), i ∈ {1, 2}

• Recovered with temporary immunity against Variant i (Ri), i ∈ {1, 2}

• Recovered with temporary immunity against Variant j, then cross-infected

by Variant i (I∗i ), i ∈ {1, 2}, i ̸= j

• Recovered with temporary immunity against both variants (P )
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Fig. 1: Flowchart of the competitive epidemic model with two variants.

Table 1: Definition of parameters in the competitive epidemic model shown
in Figure 1. All rates are per-capita except for b.

Parameter Definition

b Natural birth rate
d Natural death rate
m Mutation rate from Variant 1 to Variant 2
αi First-exposure infection rate of Variant i for

fully susceptible individuals, i ∈ {1, 2}
γi Cross-exposure infection rate of Variant i for

individuals recovered from the other variant,
i ∈ {1, 2}

βi Recovery rate for individuals infected by Vari-
ant i (first-exposure), i ∈ {1, 2}

β∗

i
Recovery rate for individuals infected by Vari-
ant i (cross-exposure), i ∈ {1, 2}

di Mortality rate for individuals infected by
Variant i (first-exposure), i ∈ {1, 2}

d∗
i

Mortality rate for individuals infected by
Variant i (cross-exposure), i ∈ {1, 2}

η Rate at which recovery-based immunity is lost

The state of super-infection (simultaneous infection by both variants) has been

deliberately excluded from the model to keep its complexity low while still

being able to capture the key dynamical aspects of interest.
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Figure 1 shows the flowchart of the competitive epidemic model, while

Table 1 lists the definitions of the model parameters. At time t = 0, only Vari-

ant 1 exists. Individuals in compartment S have no immunity to any variant

and are infected by Variant 1 at rate α1
I1+I∗

1

N
and thus move to compartment

I1. In compartment I1, infections of Variant 1 have a chance to mutate and

become infections of Variant 2, thus entering compartment I2, with a rate of

m. Usually, m is a very small value. At the same time, individuals in compart-

ment I1 recover and move to compartment R1 at rate β1, or become deceased

and leave the system at rate d1. In compartment R1, individuals lose immunity

with rate η and return to compartment S, or become infected with Variant

2 at rate γ2
I2+I∗

2

N
and enter compartment I∗2 , or die at rate d. Individuals in

compartment I∗2 recover at rate β∗
2 and enter compartment P , or die at rate

d∗2. Individuals in compartment P lose immunity at rate η and return to com-

partment S, or die at rate d. Finally, the list of possible transitions involving

Variant 2 (bottom half of Fig. 1) as the initial infection is similar to that

involving Variant 1 as the initial infection (top half).

The transitions S → I1 and S → I2 are associated with first-exposure

infections, while the transitions R1 → I∗2 and R2 → I∗1 are associated with

cross-infections. We define cross-protective immunity or cross-immunity

as the protection against a given variant gained via past exposure to its rival

variant. We will consider positive, zero, and negative cross-immunity in this

paper, where recovery from one variant leads to decreased, unchanged, or

increased susceptibility to the other variant, respectively.

Let

ρi(t) =
Ii(t) + I∗i (t)

N(t)
.
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Table 2: Summary table for our findings.

Phenonemon Proof of existence

Locally asymptotically stable equilibrium for Variant 2 Theorem 1
Locally asymptotically stable equilibrium for Variant 1 Theorem 2

Globally asymptotically stable equilibrium for both variants Theorem 3
Periodic solutions and possible chaos N/A (numeric support only)

The dynamics of the proposed model is described by the following system of

differential equations:

Ṡ(t) = −[α1ρ1(t) + α2ρ2(t) + d]S(t) + η[R1(t) +R2(t) + P (t)] + b (1a)

İ1(t) = α1ρ1(t)S(t)− [β1 +m+ d1]I1(t) (1b)

İ2(t) = mI1(t) + α2ρ2(t)S(t)− [β2 + d2]I2(t) (1c)

İ∗1 (t) = γ1ρ1(t)R2(t)− [β∗
1 + d∗1]I

∗
1 (t) (1d)

İ∗2 (t) = γ2ρ2(t)R1(t)− [β∗
2 + d∗2]I

∗
2 (t) (1e)

Ṙ1(t) = β1I1(t)− [γ2ρ2(t) + η + d]R1(t) (1f)

Ṙ2(t) = β2I2(t)− [γ1ρ1(t) + η + d]R2(t) (1g)

Ṗ (t) = β∗
1I

∗
1 (t) + β∗

2I
∗
2 (t)− [η + d]P (t) (1h)

We shall use the notationX(t) = (S(t), I1(t), I2(t), I
∗
1 (t), I

∗
2 (t), R1(t), R2(t), P (t))T

to denote the state of the population at time t.

3 Stability Analysis

In this section, we prove that conditions can be found where neither, either,

or both variants exist in a stable equilibrium. These equilibria and their

conditions are summarized in Table 2 and described in detail below.
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3.1 Disease-free equilibrium and global basic

reproduction number

For system (1), there is a disease-free equilibrium (DFE), namely E0 =

(N, 0, 0, 0, 0, 0, 0, 0)T . This can be verified by observing that all eight deriva-

tives in system (1) evaluate to zero at point E0.

It is important to find the critical condition for asymptotic stability of the

DFE, as this defines the boundary between a disease vanishing or persisting

within the population. Associated with this critical condition is a global basic

reproduction number R0 reflecting the spreading rate of the epidemic. Note

that while multiple methods of evaluating R0 exist, which may be inconsistent

with each other [31], all methods have the epidemic threshold of R0 = 1.

To find a set of sufficient conditions such that R0 < 1, we apply the next-

generation matrix method [32]. Note that due to linearization of the model

about E2, the I∗1 and I∗2 infectious states can be ignored, leaving only I1 and

I2 as the infectious states of the linearized model. This gives:

F =







α1 ρ1S

α2 ρ2S






and V =







β1I1 +mI1 + d1I1

β2I2 −mI1 + d2I2






,

where F represents the rate of new infections into compartments I1 and I2

and V represents the net outflow (outflow minus inflow) of individuals from

these two compartments by other means (including mutation from I1 to I2).

Computing the Jacobian matrices of F and V at E0, we obtain:

F =







α1 0

0 α2






, V =







β1 +m+ d1 0

−m β2 + d2






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and

FV −1 =







α1

β1 +m+ d1
0

mα2

(β1 +m+ d1)(β2 + d2)

α2

β2 + d2






.

The basic reproduction number R0 of the epidemic model equals the spec-

tral radius of FV −1. As FV −1 is triangular and non-negative, this is equivalent

to its maximum diagonal element, i.e.,

R0 = max{R
(1)
0 , R

(2)
0 }, (2)

where R
(i)
0 = αi/(βi + di + mχ{i=1}) is the basic reproduction number for

Variant i, i ∈ {1, 2}. Here, χ denotes the indicator function.

3.2 Existence condition for a single-variant endemic

equilibrium

In system (1), if R
(2)
0 = α2/(β2 + d2) > 1, then there exists an endemic

equilibrium. By substituting E2 into (1), we can prove the existence of E2

when R
(2)
0 > 1 and compute the population of each non-zero compartment:

Ŝ =
β2 + d2

α2
N, Î2 =

1− β2+d2

α2

1 + β2

η+d

N, R̂2 =
β2

η + d
Î2,

where

N =
bα2 (η + β2 + d)

α2 (d2η + dβ2 + dd2)− (d2 − d) (β2 + d2) (η + d)
.

Analyzing the Jacobian matrix of system (1) at E2 and applying the Routh-

Hurwitz stability criterion [33, 34], we obtain the following thresholds for
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stability:

R̃1 =
α2(β2 + d+ γ2 + η)

(β2 + δ2)γ2
(3)

R̃2 =
α2(β1 + d1 +m)(β2 + d+ η)(β∗

1 + d∗1) + β2γ1(β1 + d1 +m)(β2 + d2)

α2β2γ1(β1 + d1 +m) + α1(β1 + d2)(β2 + d+ η)(β∗
1 + d∗1)

(4)

R̃3 =
α2(β1 + d1 +m)(β2 + d+ η) + (β2 + d+ η)(β∗

1 + d∗1) + β2γ1(β2 + d2)

α1(β2 + d2)(β2 + d+ η) + α2β2γ1

(5)

R̃4 =

[

β2η + α2(d+ η)
]

(β2 + d2)

α2β2η + (d+ η)(β2 + d2)2
. (6)

A sufficient condition for the stability of E2 is as follows:

Theorem 1 For system (1), if R̃i > 1 for all i ∈ {1, 2, 3, 4}, then the endemic

equilibrium E2 = (Ŝ, 0, Î2, 0, 0, 0, R̂2, 0)
T is locally asymptotically stable.

The proof of Theorem 1 is presented in Appendix A. Notably, because of

the near symmetry of our model, we can obtain the characteristic polynomial

of the endemic equilibrium E1 = (Ŝ, Î1, 0, 0, 0, R̂1, 0, 0)
T by replacing (A1)

with its corresponding Jacobian matrix for point E1. Proceeding in a similar

manner as in Appendix A gives the following stability threshold for E1:

R̄1 =
α1(β1 + d+ γ1 + η)

(β1 + δ1)γ1
(7)

R̄2 =
α1(β2 + d2)(β1 + d+ η)(β∗

2 + d∗2) + β1γ2(β2 + d2)(β1 + d1 +m)

α1β1γ2(β2 + d2) + α2(β2 + d1)(β1 + d+ η)(β∗
2 + d∗2)

(8)

R̄3 =
α1(β2 + d2)(β1 + d+ η) + (β1 + d+ η)(β∗

2 + d∗2) + β1γ2(β1 + d1)

α2(β1 + d1 +m)(β1 + d+ η) + α1β1γ2
(9)

R̄4 =

[

β1η + α1(d+ η)
]

(β1 + d1)

α1β1η + (d+ η)(β1 + d1 +m)2
. (10)
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Therefore, a sufficient condition for the stability of E1 is as follows:

Theorem 2 For system (1), if R̄i > 1 for all i ∈ {1, 2, 3, 4}, then the endemic

equilibrium E1 = (Ŝ, Î1, 0, 0, 0, R̂1, 0, 0)
T is locally asymptotically stable.

Note that in addition to the two cases described in this subsection, in which

either variant becomes the sole variant among the population, it is also possible

for two-variant equilibria to exist. Such cases are described in Section 3.3.

3.3 Existence condition for two-variants endemic

equilibrium.

In system (1), in order to investigate the endemic equilibrium for both two

variants, Eco = (Ŝ, Î1, Î2, Î
∗
1 , Î

∗
2 , R̂1, R̂2, P̂ )T , we firstly find the existence of

such a equilibrium. As shown in Appendix B, an unique endemic equilibrium

exists if following conditions are satisfied:

R
(1)
0 R

(2)
0 B1B2Ŝ

2

(1−R
(1)
0 R̃

(1)
0 Ŝ)(1−R

(2)
0 R̃

(2)
0 Ŝ)

> 1,

R
(1)
0 Ŝ < 1, R

(2)
0 Ŝ < 1,

where

R
(1)
0 =

α1

β1 +m+ d1
, R̃

(1)
0 =

γ1
β∗
1 + d∗1

,

R
(2)
0 =

α2

β2 + d2
, R̃

(2)
0 =

γ2
β∗
2 + d∗2

,

B1 =
β1

β∗
1 + d∗1

, B2 =
β2

β∗
2 + d∗2

.

R
(i)
0 is the basic reproduction number for Variant i, R̃

(i)
0 represents the

ability of cross-infection.

The next step is to prove the global asymptotic stability of the whole system

(1). For simplicity, we will only consider the case where d1 = d2 = d, β1 = β∗
1 ,

and β2 = β∗
2 . A sufficient condition for the stability of Eco is as follows:
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Theorem 3 For system (1), if a coexisting endemic equilibrium Eco =

(Ŝ, Î1, Î2, Î
∗
1 , Î

∗
2 , R̂1, R̂2, P̂ )T exists, then the coexisting endemic equilibrium is glob-

ally asymptotically stable.

The proof of Theorem 3 and the value of Eco (in terms of the model

parameters) are presented in Appendix B.

4 Competitive epidemic processes of two

variants

This section and the following one present a series of numerical results based

on system (1). Unless specified, the initial state of the population is X(0) =

(106−1, 1, 0, 0, 0, 0, 0, 0)T . The objective is to understand how the infectivity of

the variants influences the dynamic process. We set our model parameters as

follows: m = 10−12, β1 = β2 = β∗
1 = β∗

2 = 0.1, η = 10−3, d = d1 = d2 = d∗1 =

d∗2 = 10−4, and b = 100, with α1, α2, γ1, and γ2 specified for each scenario. A

consequence of our chosen parameters is that the total population N remains

constant and equal to 106 in all our scenarios.

4.1 Examples

Figure 2 shows examples of the competitive epidemic process with two variants

as defined in system (1). Panels (a–c) illustrate the temporal trajectories of the

active cases, while panels (d–f) show the proportion of each variant among the

infected individuals over time. As specified by our model parameters, Variant 1

starts to spread the system at time t = 0 and causes an epidemic. This results in

a large number of infections, some of which mutate to Variant 2, causing a new

epidemic wave. Note that if Variants 1 and 2 share the same infectivity (panels

(a) and (d)), they will converge to a state where both variants are equally
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Fig. 2: Examples of the competitive epidemic process.



Springer Nature 2021 LATEX template

16 Nonlinear Dynamics

prevalent in the population. On the other hand, reducing Variant 1’s cross-

exposure infectivity below that of Variant 2 causes Variant 1 to comprise a

smaller proportion of total infections in the endemic equilibrium. Furthermore,

if both the first- and cross-infectivity of Variant 1 is low (panels (c) and (f)),

Variant 1 will become extinct during the epidemic process, leaving Variant 2 as

the sole remaining strain. Notably, the trajectories of the epidemic processes

may show damped oscillations before converging to the endemic equilibrium

as t → ∞.

4.2 Effect of first-exposure infectivity

Figures 3 and 4 shows the proportion of each variant among the infected

population at time t = 6000 days, with respect to the first-exposure infectivity

rates α1 and α2. In particular, Figure 3 considers the case where the cross-

exposure infectivities of the two variants are equal, while Figure 4 considers

the case where they are unequal. In each figure, the left set of panels show the

theoretical bounds of the Variant-2-only region as defined by the threshold set

in Theorem 1. In accordance with Theorem 1, we plot the minimum value of

R̃i, i ∈ {1, 2, 3, 4}, and mark the contour where this minimum is equal to the

threshold of 1.

The middle panels show the proportion of Variant 2 infections among all

infected individuals in the population at t = 6000 days. Finally, the right

panels show the absolute number of Variant 2 infections, also for t = 6000.

The results demonstrate consistency with Theorem 1, showing that almost all

infections are of Variant 2 if the threshold condition of Theorem 1 is met.

4.2.1 Equal cross-immunity

If the cross-exposure infectivities of the two variants are equal, then the param-

eter space of the two variants’ first-exposure infectivities can be partitioned
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Fig. 3: Trade-off between first-exposure infectivities if the cross-exposure infectivities are equal. The left panels show the
theoretical bounds of the Variant-2-only region as deduced from Theorem 1, the middle panels show the proportion of Variant
2 infections among the infected population on at t = 6000 days, and the right panels show the number of Variant 2 infections
at t = 6000. (a–c): γ1 = γ2 = 0.025; (d–f): γ1 = γ2 = 0.1; (g–i): γ1 = γ2 = 0.5.
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Fig. 3: (Continued)
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into four regions, as shown in Fig. 3(b, e, h), based on the asymptotic behavior

of the system. These four parts are the disease-free region (gray), the Variant-1-

only region (blue), the Variant-2-only region (red), and the coexistence region.

Note that the two single-variant regions appear to be nearly symmetrical about

the line α1 = α2, with Variant 2 more likely to become the dominant strain if

α2 > α1 (and vice versa).

If the cross-exposure infectivities are low, as shown in Fig. 3(a–c) where

γ1 = γ2 = 0.025, then the Variant-2-only region occupies a large area. As

γ1 = γ2 increases, the single-variant regions shrink in size, while the coex-

istence region expands. In other words, high cross-infectivity makes it more

difficult for either variant to become or remain dominant over time, regardless

of whether either variant has a competitive advantage for first-exposure infec-

tions, as recovered cases of one variant more easily become infected cases of the

other. Finally, there are some ripples in the coexistence regions, implying the

possibility of periodic or chaotic solutions with multiple endemic equilibria.

4.2.2 Unequal cross-immunity

If the cross-exposure infectivities of the two variants are unequal, the param-

eter space of the two variants is also divided into multiple parts, as shown in

Fig. 4(b, e, h). However, unlike in Section 4.2.1, the coexistence region is clearly

divided into two distinct parts – a smooth region and an unstable region with

many rapid fluctuations in the epidemic behavior. Interestingly, the sizes of the

Variant-2-only regions are unaffected by the changes in cross-immunity and

are similar to that in Fig. 4(a, d, g). This is despite the appearance of γ1 and

γ2 terms in the conditions underlying Theorem 1. Furthermore, the unstable

region mostly exists below the α1 = α2 diagonal (i.e., in the α1 > α2 region)

if γ1 < γ2, and above the diagonal if γ1 > γ2. In other words, instability is
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Fig. 4: Trade-off between first-exposure infectivities if the cross-exposure infectivities are unequal. The left panels show the
theoretical bounds of the Variant-2-only region as deduced from Theorem 1, the middle panels show the proportion of Variant
2 infections among the infected population on at t = 6000 days, and the right panels show the number of Variant 2 infections
at t = 6000. (a–c): γ10.025, γ2 = 0.5; (d–f): γ1 = 0.1, γ2 = 0.5; (g–i): γ1 = 0.5, γ2 = 0.1.
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most likely to occur if the competitive advantages/disadvantages of Variant 2

for first- and cross-exposure infections lie in opposite directions.

4.3 Analysis of sample epidemic trajectories

To better understand the behavior of the epidemic model in the single-variant,

smooth coexistence, and unstable regions, we sample some parameter settings

from Fig. 4(e) and plot the trajectory of the epidemic over time for four dif-

ferent points on the parameter plane, as shown in Fig. 5. In particular, we

select one point from the Variant-2-only region of Fig. 4(e)’s parameter space,

one point from the smooth part of the coexistence region, and two points

from an unstable region in which the day-6000 proportion of Variant 2 cases

shows rapid fluctuations. The dynamical properties of the epidemic for each

parameter setting is represented as a phase graph in three dimensions, based

on projecting the state of the full model (1) to the 3-vector (S, V1, V2)
T where

Vi = Ii + I∗i .

Point A (α1 = α2 = 0.3) is located in the smooth part of the coexistence

region, and its trajectory converges to a single endemic equilibrium, namely

Eco = (Ŝ, V̂1, V̂2)
T . In contrast, point D (α1 = 0.05, α2 = 0.3) is located in

the Variant-2-only region, and its trajectory converges towards the endemic

equilibrium E2 = (Ŝ, 0, V̂2)
T . Finally, points B (α1 = 0.3, α2 = 0.1) and C

(α1 = 0.4, α2 = 0.25) lie within the unstable region, and their trajectories

appear to exhibit periodic properties, with two sets of loops near the V1 = 0

and V2 = 0 planes, respectively. Additional numerical investigations of the

unstable region further suggest that the number/proportion of active cases of

the two variants exhibits periodic oscillations in this region. The emergence of

such periodic behavior suggests that our competitive epidemic model is suf-

ficient to show complex evolutionary behavior despite its simple formulation,
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Fig. 5: Epidemic trajectories for four different points in the parameter space of Fig. 4(e).
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and motivates the need to further explore such periodic (and possibly chaotic)

behaviors in future work.

5 Discussion

The SARS-CoV-2 virus that causes COVID-19 is still spreading and mutating

and will keep doing so for the foreseeable future. The virus’s high ability to

achieve immune escape makes it impossible to eliminate from human society.

Additionally, many other viruses circulating in humans, e.g., influenza, also

have multiple strains. It is therefore essential to investigate the competitive

processes of such virus strains. As an extension of existing compartmental

epidemic models in the literature, we have proposed a simple dual-SIRS model

to describe the competitive process of two disease variants.

In Section 3, we investigated the stability of the model’s disease-free equi-

librium (DFE), generated sufficient conditions under which a single Variant

endemic equilibrium (EE) is locally asymptotically stable, and gave the suf-

ficient conditions under which both variants endemic equilibrium (EE) is

globally asymptotically stable. From the DFE, the competitive epidemic pro-

cess’ basic reproduction number, R0, can be obtained. The derivation of

R0 shows that the rate of disease spread (including both variants) depends

solely on the more contagious of the two variants. In the numerical results in

Sections 4, our analysis allows us to predict which variant (if any) will dom-

inate the competitive epidemic process. Although our work is limited to the

study of two disease variants, it forms a good starting point for analyzing more

complex epidemic models in future work.

In Sections 4, we used numerical analysis to study how first-exposure and

cross-exposure infectivity affects the long-term evolution of the competitive

epidemic process. While the numerical results verify our theoretical results
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regarding the stability of the Variant-2-only EE if R̃i > 1 for all i ∈ {1, 2, 3, 4},

it also shows the variety of results that can occur outside of this region, includ-

ing periodic or chaotic behavior. The ability to predict such behavior may help

hospitals and other healthcare organizations to prepare the necessary medical

resources before a surge in caseload occurs.

Notably, the existence of periodic or chaotic behavior in our epidemic model

means that a decrease in active cases does not necessarily signal the end of

an epidemic. Additionally, reducing the infectivity of a variant by implement-

ing non-pharmaceutical interventions can potentially cause such periodic or

even possibly chaotic behavior to emerge, paradoxically increasing healthcare

demand. Therefore, governments and other policymakers must be careful when

introducing epidemic prevention policies.

Our work also has some limitations, most notably, the lack of investiga-

tions of the impact of vaccination and the data study on COVID-19 or other

infectious diseases. Furthermore, theoretical analysis of periodical results is not

included due to the difficulty and space limitations. Regarding the model, it is

only capable of handling scenarios involving two viruses, rather than multiple

viruses. This forms part of our future work.

Finally, note that our proposed model is general enough to be applied

to fields beyond infectious disease epidemiology. As noted in the Introduc-

tion, additional potential applications include modeling the spreading of

information/disinformation [4, 5] and malware [6].

6 Concluding Remarks

This paper studied a competitive epidemic process with two variants based on

the susceptible-infected-removed-susceptible (SIRS) model. The global basic

reproduction number R0 was derived, demonstrating that the more contagious
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variant of the two determined the threshold of whether the epidemic would

persist or fade. Furthermore, by studying the stability of the endemic equi-

librium, we obtain the conditions under which the newly introduced variant

may completely replace the original variant. Based on theoretical and numer-

ical results, we can predict which variant (or both) will survive the long-term

evolution of the epidemic. We also performed numerical analysis on the effect

of different first- and cross-exposure infectivities on the evolution of the epi-

demic model and demonstrated that periodic or chaotic behavior can emerge

in some cases, especially when the cross-exposure infectivities of the two vari-

ants are unequal. Finally, note that our proposed model is sufficiently general

to be applied to various fields beyond infectious disease epidemiology in future

work.
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Appendix A Proof of Theorem 1

Consider the Jacobian matrix of system (1) at point E2 =

(Ŝ, 0, Î2, 0, 0, 0, R̂2, 0)
T , namely

J = [JL | JR] (A1)

where

JL =






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
















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
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Ŝ
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Ŝ
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Ŝ
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Î2
N
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Ŝ
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






















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


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
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
















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
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

.



Springer Nature 2021 LATEX template

28 Nonlinear Dynamics

The characteristic polynomial of matrix J is

P (x) = det(xI− J)

= −a−7
2 q−6

2 k4(x)k5(x)

× α2
2q

2
2k1(x)[k3(x)k2(x) + q1]

×
(

α2β2ηq2(d+ η)[k3(x)− α2 + β2] + h(x)k4(x)
)

(A2)

where

k1(x) = −α1β2d− α2d
2 − α2β2η − 2α2dη − α2η

2 − α2dγ2 + β2dγ2

+ dd2γ2 − α2ηγ2 + β2ηγ2 + d2ηγ2 − α2q2x

k2(x) = −α2β
∗
1β2 − α2β

∗
1d− α2β2d

∗
1 − α2dd1 − α2β

∗
1η − α2d

∗
1η

+ α2β2γ1 − β2
2γ1 − β2d2γ1 − α2q2x

k3(x) = α2[α1(β2 + d2)− α2(β1 + d1 +m+ x)]

k4(x) = d+ η + x

k5(x) = β2 + d2 + x

h(x) = α2q3(β2 + d2)(d+ η)q2 + α2q2x[α2d+ d2 − dd2 + (q3 + d)η + q2x]

q1 = −α1α2β2q3(β2 + d2)γ1

q2 = β2 + d+ η

q3 = α2 − β2 − d2

Note that the ki(x)’s are all degree-1 in x and h(x) is degree-2 in x; thus

P (x) is has a degree of 8 in x. Theorem 1 thus reduces to the following:
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Proposition 1 The Routh-Hurwitz criterion [33, 34] is satisfied, i.e., the real parts

of the roots of (A2) are all negative, if R̃i > 1 for all i ∈ {1, . . . , 7}, where R̃1 to R̃4

are defined as in (3)–(6) and:

R̃5 =
α2X4 +X5X1

X2
4 +X3

R̃6 =
X1(X2 +X5)

X3

R̃7 =
(X1X2 +X5) (α2X4 +X5X1) +X3

(

X2
4 +X3

)

+X2

(

α2β2η +X1X
2
4

)

(X1X2 +X5)
(

X2
4 +X3

)

+X3 (α2X4 +X1X5) +X2 (β2η + α2X1)X4
,

where

X1 = d+ η

X2 = β2 + d+ η

X3 = d2η + dd2 + β2η

X4 = β2 + d2

X5 = α2 + d.

Proof By considering each factor of P(x) and requiring each element of the first

column of their Routh arrays to be positive (therefore resulting in zero sign changes),

then rearranging each inequality to contain 1 on the right-hand side, we obtain the

thresholds R̃i, i ∈ 1, 2, . . . , 7 as listed above. □

Proposition 2 R̃i > 1 for all i ∈ {5, 6, 7} whenever whenever E2 exists and R̃i > 1

for all i ∈ {1, . . . , 4}.

Proof Note that α2

β2+d2

> 1 whenever E2 exists, i.e. R
(2)
0 as defined in Section 3.1 is

greater than 1. From this we obtain:

R̃5 =
α2X4 +X1X5

X2
4 +X3
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>
X2

4 + (β2 + d2 + d)X1

X2
4 +X3

= 1 +
dβ2 + d2 + dη

X2
4 +X3

> 1

R̃6 =
X1(β2 + 2d+ η + α2)

X3

>
α2X1

X3

>
X1X4

X3

= 1 +
dβ2
X3

> 1

R̃7 =
(X1X2 +X5)(α2X4 +X1X5) +X3(X

2
4 +X3) +X2(α2β2η +X1X

2
4 )

(X1X2 +X5)(X
2
4 +X3) +X3(α2X4 +X1X5) +X2X4(β2η + α2X1)

.

The numerator of R̃7 can be rewritten as

(X1X2 +X5 −X3)(α2X4 +X1X5) +X3(α2X4 +X1X5)

− (X1X2 +X5 −X3)(X
2
4 +X3) + (X1X2 +X5)(X

2
4 +X3)

+X2(α2β2η +X1X
2
4 − (β2ηX4 + α2X1X4)) +X2X4(β2η + α2X1)

=(X1X2 +X5 −X3)(α2X4 +X1X5 − (X2
4 +X3)) +X3(α2X4 +X1X5)

+ (X1X2 +X5)(X
2
4 +X3) +X2(α2β2η +X1X

2
4 − (β2ηX4 + α2X1X4))

+X2X4(β2η + α2X1)

=(X1X2 +X5)(X
2
4 +X3) +X3(α2X4 +X1X5) +X2X4(β2η + α2X1)

+ (X1X2 +X5 −X3)(ϕX4 + ϕη + β2d+ ϕd+ d(d+ η))

− ϕ(dd2 + β2d+ ηd2)X2.

where ϕ = α2−β2− d2. Note that all parameters in our model (lowercase greek and

latin characters) are positive. Let

f =(X1X2 +X5 −X3)(ϕX4 + ϕη + β2d+ ϕd+ d(d+ η))
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− ϕ(dd2 + β2d+ ηd2)X2.

we have

X5 −X3 = α2 + d− d2η − dd2 − β2η > ϕ+ d− d > 0.

Therefore,

f >X1X2(ϕX4 + ϕη + β2d+ ϕd+ d(d+ η))− ϕ(dd2 + β2d+ ηd2)X2

> X2ϕ(X4 + η + d− dd2 − β2d− ηd2)

> X2ϕ(X4 + η + d− d2 − β2 − η) > d > 0.

Hence,

R̃7 =
(X1X2 +X5)(X

2
4 +X3) +X3(α2X4 +X1X5) +X2X4(β2η + α2X1) + f

(X1X2 +X5)(X
2
4 +X3) +X3(α2X4 +X1X5) +X2X4(β2η + α2X1)

= 1 +
f

(X1X2 +X5)(X
2
4 +X3) +X3(α2X4 +X1X5) +X2X4(β2η + α2X1)

> 1.

Combining Propositions 1 and 2 completes the proof of Theorem 1. □

Appendix B Proof of Theorem 3

Proposition 3 In system 1, an unique endemic equilibrium Eco =

(Ŝ, Î1, Î2, Î
∗
1 , Î

∗
2 , R̂1, R̂2, P̂ )T exists if following conditions are satisfied,

R
(1)
0 R

(2)
0 B1B2Ŝ

2

(1−R
(1)
0 R̃

(1)
0 Ŝ)(1−R

(2)
0 R̃

(2)
0 Ŝ)

> 1,

R
(1)
0 Ŝ < 1, R

(2)
0 Ŝ < 1.

Proof By substituting Eco into the normalized (1), we can get

[α1ρ̂1 + α2ρ̂2 + d]Ŝ − η[R̂1 + R̂2 + P̂ ] + b = 0 (B3a)

α1ρ̂1Ŝ − [β1 +m+ d1]Î1 = 0 (B3b)
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mÎ1 + α2ρ̂2Ŝ − [β2 + d2]Î2 = 0 (B3c)

γ1ρ̂1R̂2 − [β∗
1 + d∗1]Î

∗
1 = 0 (B3d)

γ2ρ̂2R̂1 − [β∗
2 + d∗2]Î

∗
2 = 0 (B3e)

β1Î1 − [γ2ρ̂2 + η + d]R̂1 = 0 (B3f)

β2Î2 − [γ1ρ̂1 + η + d]R̂2 = 0 (B3g)

β∗
1 Î

∗
1 + β∗

2 Î
∗
2 − [η + d]P̂ = 0 (B3h)

Hence, we can get the following equations that reveal the relationships between

parameters.

Î1 =
α1ρ̂1Ŝ

β1 +m+ d1
(B4a)

Î2 =
mÎ1

β2 + d2
+

α2ρ̂2Ŝ

β2 + d2
(B4b)

Î∗1 =
γ1ρ̂1R̂2

β∗
1 + d∗1

(B4c)

Î∗2 =
γ2ρ̂2R̂1

β∗
2 + d∗2

(B4d)

Î1 =
[γ2ρ̂2 + η + d]R̂1

β1
(B4e)

Î2 =
[γ1ρ̂1 + η + d]R̂2

β2
(B4f)

For sufficiently small m, combining (B4a) and (B4b), we get

α1Ŝ

β1 +m+ d1
+

γ1R̂2

β∗
1 + d∗1

= 1

Similarly, by combining (B4a) and (B4c), we have

α1Ŝ

β1 + d1
+

γ1R̂2

β∗
1 + d∗1

= 1

Then,

R̂1 =
β∗
2 + d∗2
γ2

(1−
α2Ŝ

β2 + d2
) (B5a)

R̂2 =
β∗
1 + d∗1
γ1

(1−
α1Ŝ

β1 +m+ d1
) (B5b)
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are obtained. Then, since R̂1 and R̂2 need to be larger than 0, we have

α2Ŝ

β2 + d2
< 1 (B6a)

α1Ŝ

β1 +m+ d1
< 1 (B6b)

Next, we use functions of Ŝ to represent the rest of the other parameters ρ̂i, i = 1, 2.

From (B4a) and (B4e),

α1ρ̂1Ŝ

β1 +m+ d1
=

[γ2ρ̂2 + η + d]R̂1

β1

and (B4b) and (B4f) show that

α2ρ̂2Ŝ

β2 + d2
=

[γ1ρ̂1 + η + d]R̂2

β2

Then,

ρ̂1 =
[γ2ρ̂2 + η + d]R̂1

β1
×

β1 +m+ d1

α1Ŝ
(B7a)

ρ̂2 =
[γ1ρ̂1 + η + d]R̂2

β2
×

β2 + d2

α2Ŝ
(B7b)

Substituting (B7a) into (B7b), have

α2ρ̂2Ŝ

β2 + d2
= [γ1

[γ2ρ̂2 + η + d]R̂1

β1
×

β1 +m+ d1

α1Ŝ
+ η + d]R̂2/β2

such that

ρ̂2 =
(η + d)[γ1R̂1R̂2

(β2+d2)(β1+m+d1)

α1β1Ŝ
+ 1]

α2β2Ŝ − γ1γ2R̂1R̂2 ×
(β2+d2)(β1+m+d1)

α1β1Ŝ

(B8)

Similarly,

ρ̂1 =
(η + d)[γ2R̂1R̂2

(β2+d2)(β1+m+d1)

α2β2Ŝ
+ 1]

α1β1Ŝ − γ1γ2R̂1R̂2 ×
(β2+d2)(β1+m+d1)

α2β2Ŝ

(B9)

To make sure ρ̂i and i = 1, 2 have their practical meaning, their denominator must

be larger than 0, which indicates that

α1α2β1β2Ŝ
2

γ1γ2R̂1R̂2(β2 + d2)(β1 +m+ d1)
> 1
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Then, combing (B5a) and (B5b), the following equation exists:

α1α2β1β2Ŝ
2

[(β1 +m+ d1)(β
∗
1 + d∗1)− α1γ1Ŝ][(β2 + d2)(β

∗
2 + d∗2)− α2γ2Ŝ]

> 1 (B10)

Let

R
(1)
0 =

α1

β1 +m+ d1
, R̃

(1)
0 =

γ1
β∗
1 + d∗1

,

R
(2)
0 =

α2

β2 + d2
, R̃

(2)
0 =

γ2
β∗
2 + d∗2

,

B1 =
β1

β∗
1 + d∗1

, B2 =
β2

β∗
2 + d∗2

where R
(1)
0 , R̃

(1)
0 , R

(2)
0 , R̃

(2)
0 can properly represent the basic reproduction number of

first-exposure and cross-exposure of variant 1 and 2 accordingly. We can finally give

the existence condition that the endemic equilibrium of the co-existence of the two

variants as follows:

R
(1)
0 R

(2)
0 B1B2Ŝ

2

(1−R
(1)
0 R̃

(1)
0 Ŝ)(1−R

(2)
0 R̃

(2)
0 Ŝ)

> 1,

R
(1)
0 Ŝ < 1, R

(2)
0 Ŝ < 1.

□

Proposition 4 For system (1), if the coexisting endemic equilibrium Eco =

(Ŝ, Î1, Î2, Î
∗
1 , Î

∗
2 , R̂1, R̂2, P̂ )T exists, then the coexisting endemic equilibrium is glob-

ally asymptotically stable.

Proof Under the assumption of d1 = d2 = d, β1 = β∗
1 , and β2 = β∗

2 , the

normalized (1) can be written into the following equations:

dS

dt
= −(α1ρ1 + α2ρ2 + d)S + ηR+ b (B11a)

dρ1
dt

= α1ρ1S + γ1ρ1R2 − (β1 + d)ρ1 −mI1 (B11b)

dρ2
dt

= α2ρ2S + γ2ρ2R1 − (β2 + d)ρ2 +mI1 (B11c)

dR

dt
= β1ρ1 + β2ρ2 − γ1ρ1R2 − γ2ρ2R1 − (η + d)R (B11d)
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where R = R1 +R2 + P . Sum up the above equations, we have

d

dt
(S + ρ1 + ρ2 +R) = b− dS − dρ1 − dρ2 − dR (B12)

At the co-existing endemic equilibrium, according to the above equation, we have

b = d(Ŝ + ρ̂1 + ρ̂2 + R̂). Substituting b into (B12), we have

d

dt
(S + ρ1 + ρ2 +R) = −d(S − Ŝ + ρ1 − ρ̂1 + ρ2 − ρ̂2 +R− R̂) (B13)

Let us consider a possible Lyapunov function

V =
1

2
(S − Ŝ + ρ1 − ρ̂1 + ρ2 − ρ̂2 +R− R̂)2 (B14)

Note that as S, ρ1, ρ2, and R approach infinity, the function V also approaches infin-

ity, indicating that V is radially unbounded. Its derivative along the trajectories of

(B11) is

V ′ = (S − Ŝ + ρ1 − ρ̂1 + ρ2 − ρ̂2 +R− R̂)
d

dt
(S + ρ1 + ρ2 +R)

= −d(S − Ŝ + ρ1 − ρ̂1 + ρ2 − ρ̂2 +R− R̂)2.

Clearly, V ′ < 0 always holds except at the equilibrium. By the Lyapunov asymp-

totic stability theorem, the co-existing endemic equilibrium is globally asymptotically

stable in the positive quadrant when it exists [35].

Combining Propositions 3 and 4 completes the proof of Theorem 3. □
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