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Abstract

In mobile cellular design, one important quality-of-service metric is the blocking prob-

ability. Using computer simulation for studying blocking probability is quite time-

consuming, whereas existing teletraffic-based methods such as the Information Ex-

change Surrogate Approximation (IESA) only give a rough estimate of blocking prob-

ability. Another common approach, direct blocking probability evaluation using neural

networks (NN), performs poorly when extrapolating to network conditions outside of

the training set. This paper addresses the shortcomings of existing teletraffic and NN-

based approaches by combining both approaches, creating what we call IESA-NN. In

IESA-NN, an NN is used to estimate a tuning parameter, which is in turn used to es-

timate the blocking probability via a modified IESA approach. In other words, the

teletraffic approach IESA still forms the core of IESA-NN, with NN techniques used

to improve the accuracy of the approach via the tuning parameter. Simulation results

show that IESA-NN performs better than previous approaches based on NN or tele-

traffic theory alone. In particular, even when the NN cannot produce a good value for

the tuning parameter, for example when extrapolating to network conditions not ex-

perienced in the training set, the final IESA-NN estimate is generally still accurate as

the estimate is primarily determined by the underlying teletraffic theory, with the NN

determining the tuning parameter playing a supplementary role. The combination of
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ofTable 1: List of Key Abbreviations

Abbreviation Meaning

BLS Broad learning system (NN model)

BS Base station

EFPA Erlang Fixed Point Approximation

ELM Extreme learning machine (NN model)

EEM-ELM Enhancement of error-minimized ELM

IESA Information Exchange Surrogate Approximation

IESA-CN IESA for cellular networks

IESA-NN IESA with neural networks

NN Neural network

R3S Round robin with random start

SLFN Single-hidden-layer feedforward network

QoS Quality of service

the IESA framework with NN in a secondary role makes IESA-NN quite robust.

Keywords: Neural networks, quality of service, cellular networks, teletraffic, overflow

loss systems

1. Introduction

Evaluating quality-of-service (QoS) metrics and meeting minimum QoS require-

ments form crucial components of many mobile cellular design and optimization prob-

lems, including base station (BS) sleeping [1, 2], BS deployment [3, 4], user asso-

ciation [5], dynamic routing [6], network resource allocation [7], and load balanc-

ing [8]. Accurate, robust, and computationally efficient algorithms for QoS evaluation

are thus very important for obtaining practical solutions in such search-based opti-
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networks, which require the QoS evaluation of a large number of candidate solutions.

In particular, the blocking probability of requests in the network is a widely-used

QoS metric, defined as the long-term average proportion of mobile user requests not

successfully completed. As there are generally no closed-form solutions for evaluating

blocking probability and other QoS metrics in practical optimization problems, one tra-

ditional way to evaluate such metrics is via computer simulation, which can achieve a

high level of accuracy under most circumstances but is considered time-consuming and

not scalable for application scenarios with a large number of BSs and a high volume of

user requests, e.g. a densely-populated area served by novel millimeter-wave BSs. This

disadvantage prevents simulation from being effectively adopted in next-generation

mobile applications. The problem of long running times is further exacerbated in new

mobile communications applications with very high QoS requirements, for example

Ultra-Reliable Low-Latency Communication (URLLC), where the blocking probabil-

ity requirements are typically at or below 10−6. Therefore, other approaches must be

used.

A list of abbreviations used in this paper is given as Table 1.

1.1. Teletraffic theory-based approaches

Another method for blocking probability evaluation is using teletraffic theory-based

approaches such as the classical Erlang Fixed Point Approximation (EFPA) [9]. Kelly [9]

demonstrated that for networks with fixed routing, a fixed-point algorithm, using the

means of the per-link offered traffic alone, is asymptotically exact as the number of

channels per link tends to infinity (with the offered traffic increasing in proportion).

Although Kelly [9] focused on wired telecommunication networks, Kelly also demon-

strated how the method could be applied to channel assignment in a cellular radio

network. Finally, Kelly also demonstrated the properties of EFPA when applied to

networks with alternate routing. In such cases, EFPA may have multiple fixed points

corresponding to different metastable states of the network, caused by feedback loops

that arise when alternate-routed traffic consume more resources than direct traffic.

However, the two main simplifying assumptions of EFPA, namely that of Poisson
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sult in large approximation errors in some cases [10]. In addition, EFPA tends to be

especially inaccurate when the system blocking probability is low (e.g., below 10−3)

and when the system exhibits high levels of mutual overflow. Mutual overflow is a phe-

nomenon that occurs when traffic offered to overloaded BSs overflows (is redirected)

to neighboring BSs, in turn overloading those BSs and yielding overflow traffic to the

original BS.

The performance evaluation of overflow loss systems with mutual overflow is a

long-standing problem [11]. Over the past decade, a new approach has emerged to ad-

dress this problem, by modifying EFPA to address its shortcomings for such networks

(caused by its simplifying assumptions). This has led to what is known as Information

Exchange Surrogate Approximation (IESA) framework [12]. IESA applies an EFPA-

based decomposition approach on a fictitious surrogate system instead of the real sys-

tem to be evaluated, aiming to capture features in systems with mutual overflow traffic

that are ignored by EFPA. As a result, IESA exhibits significantly improved accuracy

and robustness over EFPA, while maintaining EFPA’s computational efficiency. To the

best of our knowledge, there are no viable teletraffic theory-based approaches other

than IESA that can effectively and efficiently evaluate blocking probability in overflow

loss systems with mutual overflow.

A revised version of IESA, called IESA for Cellular Networks (IESA-CN) [13],

was devised for cellular networks, which have unique locality and mobility features

not present in previously-considered overflow loss models such as video-on-demand

systems. By introducing a tuning parameter to reflect the extent of traffic overflow and

mobility among different BSs, IESA-CN can capture the unique features of cellular

networks and obtain highly accurate approximations in many cases. However, IESA-

CN remains inaccurate in some cases, for example when the offered traffic is extremely

low or when user mobility is extremely high. Improving the accuracy and robustness

of IESA-CN thus forms the main objective of this paper.

4



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of1.2. Neural network-based approaches

Neural networks (NN) are now commonly used in many applications. In particular,

single-hidden-layer feedforward network (SLFN) models, such as the broad learning

system (BLS) [14] and extreme learning machine (ELM) [15], with a sufficient number

of hidden nodes, provide universal approximation ability, namely the ability to approx-

imate any continuous function with any desired precision. In the past decade, the NN

approach has been adopted for traffic prediction and QoS evaluation in a number of

telecommunications applications [16–20].

In particular, the SLFN approach has been used to evaluate blocking probability

in optical networks [21]. However, this approach was shown to provide low accuracy

when the blocking probability of the network is small (e.g., below 10−3). As the range

of blocking probabilities in practical telecommunications networks can span several

orders of magnitude, this approach is not suitable for estimating blocking probability

values. However, this issue can be readily resolved by first applying a logarithmic

transformation to the blocking probability values [17, 18].

In addition, [17, 18] also employ ELM-based approaches for constructing an SLFN

for blocking probability estimation in optical networks. Since the input weights and ac-

tivation biases of the hidden layer nodes in ELM-trained SLFNs are randomly gener-

ated, only the output weights need to be computed, using an algorithm that is several or-

ders of magnitude faster than backpropagation in traditional SLFN training algorithms.

The output weights can be computed based on a matrix pseudoinverse or incrementally

as each hidden node is added to the SLFN [22–24].

Nevertheless, there are some well-known drawbacks of NN-based approaches. Among

these, the most fundamental problem is the lack of explainability of NN output (i.e.,

the black box problem [25]), where there is no specific method for determining or in-

terpreting the rationale behind decisions made by an NN. Furthermore, the NN output

may be very poor for input values outside the range of the training set; in other words,

NNs generally have poor extrapolation capabilities.
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This paper considers a cellular network model with user mobility and mutual over-

flow traffic among BSs due to dynamic user association mechanisms. We aim to de-

velop an accurate evaluation method for request blocking probability across a wide

range of network conditions. Instead of using a pure black-box NN approach, which

heavily depends on the number and variability of training samples, this paper proposes

a hybrid approach for generating an accurate estimate of blocking probability for a

wide range of scenarios.

The fundamental model underlying our proposed approach is based on the IESA

framework with an additional tuning parameter k. Whereas k was previously evaluated

in IESA-CN using polynomial regression [13], in this paper the value of k is evaluated

using an NN. We shall therefore call our proposed method IESA with neural networks

(IESA-NN). In both IESA-CN and IESA-NN, k depends on network parameters in-

cluding the offered load to each BS, the level of user mobility, the capacity (number of

channels) of each BS, and the neighbor set of each BS cell in the network. We shall

use an enhancement of error-minimized ELM (EEM-ELM) [18, 26] to train our NN.

The proposed IESA-NN method in this paper is based on a similar approach in [19]

for a generic and highly simplified overflow loss system model. Despite its simplic-

ity, the model considered in [19] still possesses the key element of mutual overflow

and demonstrates the benefits of combining the IESA framework with NN to evaluate

blocking probability in such networks. In this paper, we further develop IESA-NN by

extending it to a much more realistic application/system model with additional features,

namely locality (a request may only overflow to a neighboring cell) and user mobility

(a user may move between cells during its request). In this paper, we show that despite

these additional network features, our IESA-NN approach remains effective at evalu-

ating blocking probability in cellular networks. This again demonstrates the versatility

and power of the IESA approach with the help of NN.

Note that in the original IESA-CN [13], which used simple second-order polyno-

mial regression rather than NNs to evaluate k, could not maintain accuracy across the

full range of parameters considered. In this paper, we show that, using EEM-ELM,

we can obtain improved values of k and in turn produce more accurate and robust ap-
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Figure 1: 49-cell wraparound (toroidal) network topology.

proximations of network blocking probability compared to not only IESA-CN but also

methods based solely on NN for blocking probability evaluation (“direct NN”).

2. Background

2.1. A modern cellular network and its mechanisms

2.1.1. Network Model

We consider a cellular network with G = 49 hexagonal cells, as shown in Fig. 1.

Such hexagonal lattices are commonly used as simple cellular network models, e.g. [27,

28]. Note, however, that our proposed methodology in this paper can be applied to

cellular networks with either regular or irregular topologies, as long as the neighbors

of each cell are known. Each cell is associated with a single base station (BS).

There is a one-to-one correspondence between cells and BSs, and we will use the

terms “cells” and “BSs” interchangeably. Each BS has a capacity of c channels. We as-

sume negligible inter-cell interference, for example by using an orthogonal frequency-

division multiple access (OFDMA) transmission scheme.

7
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Symbol Meaning

c Capacity of each BS (number of channels)

δ Migration rate of requests between

neighboring cells

θ Probability that a request will undergo further

handover before completion, equal to δ/(1 + δ)

N Number of neighbors of each cell in the

network, in this case 6

Γi Set of neighboring cells of cell i

γi,n nth BS in some arbitrary ordering of Γi

G Number of cells/BSs in the network

gi,r,n BS attempted by requests at cell i with n

overflows, where r is a random starting index,

as defined in (2)

λi Offered load of fresh requests to cell i

λ Mean load of fresh requests to each cell

Bi Non-completion probability for requests

originating at cell i, i.e., the probability that

such requests are blocked (immediately) or

dropped (during handover)

∆ In the fictitious IESA surrogate model, the set

of previously attempted BSs of a given request

(reset upon handover)

Ω In the fictitious IESA surrogate model, the

congestion estimate attribute of a given request

(reset upon handover)

8
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located within that BS’s cell, which has not yet attempted access to any other BS. The

offered load of fresh requests to each cell i, i ∈ {1, . . . ,G}, is denoted as λi. The set of

neighbors of each cell i is denoted Γi, such that Γi ⊆ {1, . . . ,G} \ i. Note that for the

model under consideration, |Γi| = N = 6 for all BSs i in the network.

Requests to the network have an exponentially distributed service time requirement

with unit mean. Requests physically located in each cell i will migrate to a neighboring

cell in Γi with rate δ, triggering a handover event. A request newly arrived (physically)

in cell i, either a fresh request or a handover request, will first attempt service from BS

i. If all channels in BS i are occupied, then the request will attempt to obtain service

from each BS in Γi in random order. We say that this request overflows to the neighbors

of BS i. Finally, if all BSs in Γi are also fully occupied, the request is blocked (for a

fresh request) or dropped (for a handover request).

A list of notations for the cellular network model is given in Table 2. Hereafter:

• The term “fresh request” refers to a request which has not yet undergone any

overflows or handovers.

• The term “handover request” refers to a request which has undergone handover,

with no overflows since the most recent handover.

• The term “overflow request” refers to a request that has undergone overflow since

its last handover (or since arrival if the request has not undergone any handovers).

• The term “origin cell” refers to the cell at which a fresh request originates.

• The term “starting cell” refers to the cell in which a fresh or handover request

is physically situated, that is, the cell from which it first attempts service after

arriving at a new physical location.

• The term “serving cell” refers to the cell that is currently serving the request,

which may differ from the starting cell due to overflow.

9
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We assume that the time between handover events for a given request is exponen-

tially distributed with mean 1/δ, and that the probability θ that a request will undergo

further handover before completion is independent of elapsed time or the number of

previous handovers. Therefore,

θ =
δ

1 + δ
. (1)

Equation (1) can be explained by noting that a request will either complete at its current

serving cell with rate 1, or undergo handover with rate δ, with no other options.

Note that:

• The total load to a BS includes the original traffic of fresh requests, handover

traffic, and overflow traffic, which may be caused by both fresh and handover

requests.

• A handover request may overflow back to the previous serving cell and continue

to be served there, if it is a neighbor of the new starting cell. On the other hand,

the old serving cell may have a maximum distance of two from the new starting

cell and a maximum distance of three from the new serving cell, forming a

straight line of adjacent cells: old serving cell, old starting cell, new starting cell,

new serving cell..

2.1.3. Round Robin with Random Start (R3S)

As allowing full random routing of overflow traffic results in intractable computa-

tional complexity, we shall approximate random routing with round robin with random

start (R3S) [12]. Recall that N is the number of neighbors of each BS in our model,

and let
(
γi,1, . . . , γi,N

)
be an arbitrary ordering of the neighbor set Γi for each BS i in

the network. For convenience, define

�

χ
�

= χ −
⌊
χ − 1

N

⌋
N.

In other words,
�

χ
�

equals χ minus the largest multiple of N strictly less than χ, such

that
�

χ
� ∈ {1, . . . ,N} for all positive integer χ.

10
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Finally, the index of the BS that a request with starting cell i and n overflows is offered

to, n ∈ {0, . . . ,N}, is:

gi,r,n =



i, n = 0

γi,⟦ j+n−1⟧, n = 1, . . . ,N,
(2)

where r is a random starting index. A graphical example depicting gi,r,n for a given cell

i is provided in Fig. 2. We can see that gi,1,n = γi,n and gi,4,n = γi,⟦n+3⟧ for n ∈ {1, . . . , 6},
with γi,n defined in a clockwise fashion around cell i.

In this paper, we will use R3S to approximate full random routing in EFPA, IESA-

CN, and IESA-NN, while comparing against simulation results using full random rout-

ing. Numerical results in [12] demonstrated that R3S is a close approximation to full

random routing in terms of blocking probability evaluation.

2.2. EFPA

EFPA is based on two simplifying assumptions:

1. All traffic in the network (including handover and overflow traffic) is Poisson.

2. The traffic streams to all BSs are mutually independent.

The two assumptions above lead to a set of fixed-point equations that can be solved via

iterative substitution [29]. Furthermore, each BS can be modeled using a simple Erlang

B queue model. A brief derivation of EFPA for the current cellular network model is

given in Appendix A.

2.3. IESA and IESA-CN

IESA [12] is an EFPA-based approach that has been demonstrated to improve accu-

racy in blocking probability estimation compared to the original EFPA. IESA applies

EFPA on a fictitious hierarchical surrogate system, where each request has two specif-

ically designed attributes, denoted ∆ and Ω. Specifically, ∆ records the BSs that a

request has attempted and been rejected from (due to lack of capacity), whereas Ω

serves as an estimate of the number of busy (full) BSs in the network.

11
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Figure 2: Routing sequences depicting gi,r,n for a given cell i and two different starting indexes r. In this

example γi,n, n = 1, . . . 6, is defined in a clockwise order. Gray arrows denote blocked/dropped requests after

N + 1 = 7 overflows.
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will immediately abandon the network (i.e. blocking or dropping) without attempting

the remaining BSs is:

Pk,n, j =



0, j < N(
j−n

N−n

)
(

k−n
N−n

) , j ≥ N,
(3)

where k is a parameter denoting the maximum allowed Ω value of requests in the

network. In addition to the abandonment policy defined by (3), the fictitious IESA

surrogate system also introduces rules for updating ∆ and Ω after each overflow, which

are detailed in Appendix B. Note that during a handover event, a request’s ∆ and Ω are

reset to ∅ (the empty set) and 0, respectively.

Based on the traffic hierarchy on Ω created by the abandonment policy, an EFPA-

like process can be applied to estimate Bi for each BS i in the network. A full derivation

is provided in Appendix B. Note that the abandonment policy defined by (3) creates

bounds on the blocking probability estimated generated by IESA: k = 1 creates a

system with no overflows, thus maximizing the blocking probability, while k → ∞
disables the abandonment policy and causes IESA to converge to EFPA. In other words,

the accuracy of IESA-based approximations depend heavily on the choice of tuning

parameter k. In the original IESA [12], designed for video-on-demand systems, k was

fixed to G, which is not appropriate for networks such as cellular networks with strong

locality and mobility effects. To enhance the accuracy of IESA for cellular networks,

in [13] the concept of IESA for cellular networks (IESA-CN) was proposed, in which

the value of k is obtained via second-order polynomial regression, with training values

obtained via simulation.

Figures 3 and 4 give the basic idea of the IESA and IESA-CN approaches. The

inputs are defined as in Table 2, with λ =
∑

i λi/G. In both cases, the IESA component

takes the network parameters and the tuning parameter k as input and outputs the block-

ing probability Bi for each BS i. The IESA methodology itself, shown in the figures as

“IESA steps”, is desribed in detail in Appendix B.

The differences between IESA and IESA-CN can be described as follows. In IESA,

k is a fixed input parameter, whereas in IESA-CN it is derived from the network pa-

13
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Figure 3: Conceptual depiction of IESA. See Table 2 for a list of notations. Bold arrows denote vector

inputs/outputs.

Figure 4: Conceptual depiction of IESA-CN. See Table 2 for a list of notations. Bold arrows denote vector

inputs/outputs. Note that all inputs to the second-order polynomial are scalars.

14
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Figure 5: Conceptual depiction of Direct-NN. See Table 2 for a list of notations. Note that all inputs to the

ELM network are scalars.

rameters. Note that k can be interpreted physically as the expected number of BSs a

request is expected to visit during its service, due to both overflow and handover, and

is therefore rounded to the nearest integer in IESA-CN.

2.4. Direct NN

Since SLFNs with sufficient hidden nodes provide universal approximation abil-

ity [14, 15], an SLFN was proposed in [16] for evaluating blocking probability in op-

tical networks. This approach first uses computer simulation to obtain a training set

{(xℓ, yℓ) | ℓ = 1, . . . , s}, where xℓ is a vector containing the network parameters of the

ℓth training sample, yℓ is the corresponding blocking probability, and s is the number

of training samples. However, direct use of the yℓ’s as NN target values was shown to

yield poor results when the blocking probability values are small.

To handle the large range issue when estimating blocking probability values, a

logarithmic transformation can be applied [17, 18], such that the training set of the

SLFN becomes
{(

xℓ, log (yℓ)
) | ℓ = 1, . . . , s

}
. In addition, ELM-based learning [17, 18]

provides a more computationally efficient incremental approach to constructing the

SLFN [22–24] that is several orders of magnitude faster than backpropagation for tra-

ditional NNs. We can extend the approach of [17, 18] to handle the case of cellular

15
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network ℓ is its collection of network parameters λ, N, δ, and c, as defined in Table 2,

and the corresponding output, is the logarithm of the network probability. As the (log-

arithm of the) blocking probability is computed directly from the network parameters,

we call this the Direct-NN approach.

The Direct-NN approach, as shown in Fig. 5, suffers from a major shortcoming

known as the black-box problem [25], where the behavior of a trained NN cannot be

readily explained. Additionally, NNs can only be trained based on the available data,

and do not contain any intrinsic knowledge of the system to be approximated. There-

fore, NNs generally do not posses any extrapolation ability to input parameter ranges

not previously seen, as shown in Section 4.

In the remainder of this paper, we propose a novel hybrid approach for blocking

probability evaluation in mobile cellular networks. In this hybrid approach, the funda-

mental evaluation step is based on the IESA framework with tuning parameter k, as in

IESA-CN. However, this value k is now evaluated using a trained SLFN rather than via

polynomial regression, as in IESA-CN. Finally, an analytic continuation of (3) is used

to allow for non-integer values of k to be used within the IESA framework, based on the

identities
(

n
m

)
= n!

m!(n−m)! and n! = Γ (n + 1). Numerical results in Section 4 demonstrate

that the new hybrid approach, which we call IESA-NN, is more accurate and robust

than both IESA-CN and Direct-NN, and has good extrapolation ability that is lacking

in Direct-NN.

3. Hybrid Learning Approach: IESA-NN

3.1. Overview

This section considers a hybrid learning approach, namely IESA-NN, for estimat-

ing blocking probability in cellular networks. In hybrid learning [30, 31], machine

learning and conventional models are combined to produce more accurate results than

can be obtained via either method alone. In particular, the conventional model controls

extrapolation in regions of input space that lack training data, while the neural network

compensates for inaccuracies in the conventional model [30], or is used to estimate its
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Figure 6: Conceptual depiction of IESA-NN. See Table 2 for a list of notations. Bold arrows denote vector

inputs/outputs. Note that all inputs to the ELM network are scalars.

parameters, e.g., transmission and recovery rates in epidemiological models [32]. Such

approaches can be thought of as a form of “theory-guided data science” [33]. Other

applications of hybrid learning approaches include power systems [34, 35], oil and gas

delivery [36], geology [37], and fluid mechanics [38].

A conceptual depiction of IESA-NN is shown in Fig. 6. The network parameters

λ, δ, N, and c, as defined in Table 2, are first inputted into an ELM network, which

outputs an appropriate value of the tuning parameter k of the IESA algorithm. Then,

the IESA algorithm gives an estimate of the network blocking probability as the final

output. In the following subsections, we will describe the training procedure of the

ELM network.

Numerical results in Section 4 demonstrate that IESA-NN is more accurate and

robust than existing IESA approaches including the original IESA and IESA-CN. Al-

though replacing the default k of IESA with a fitted value in IESA-CN improves ac-

curacy, the performance of IESA-CN is still not ideal compared to IESA-NN, due to

the limited approximation ability of the second-order polynomial in IESA-CN. Addi-
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compared to IESA-CN.

IESA-NN is also shown in Section 4 to outperform Direct-NN. For Direct-NN,

when the network parameters fall outside the range of the training set, the NN may not

be able to handle those particular network conditions and will therefore yield inaccurate

results. On the other hand, even when previously unobserved network parameters result

in a poor choice of k by the NN, final estimation of the request blocking probability

is still guided by a teletraffic model and thus does not deviate from the true value too

much.

3.2. Preparing the training data

In order to train an ELM network to output appropriate values of k, we need a train-

ing set {(xℓ, kℓ) | ℓ = 1, . . . , s}, where xℓ is a vector containing the network parameters

of the ℓth training sample, and kℓ is the corresponding value of k for IESA-NN. The

following steps summarize the method for obtaining kℓ for each training sample ℓ:

1. Given network parameters xℓ, use computer simulation to obtain the correspond-

ing blocking probability Bsim
ℓ .

2. Using the IESA algorithm, use bisection search to find a value k̂ such that Bsim
ℓ

(
k̂
)
=

Bsim
ℓ and assign k̂ to kℓ. Use the best fit if no match is found within the search

range – since Bsim
ℓ

(
k̂
)

is monotonic in k̂, this will be one of the search bounds.

For this paper, the search bounds are 7 and 49, i.e. N + 1 and G.

3.3. ELM: notation

We consider an ELM network with a single hidden layer and Nh hidden nodes [15].

The output of the ELM network is given by

fNh (x) =
Nh∑

h=1

whϕh (x) ,

where x is a vector containing the network parameters for a given cellular network, wh

is the weight between the hth hidden node and the output node, and ϕh is the output
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function for the hidden nodes, such that

ϕh (x) =
1

1 + 1/ exp
{
ξ⊺h x + βh

} ,

where ξh is the input weight vector of the hth hidden node, and βh is the corresponding

activation bias, which are randomly generated for each hidden node h [15].

Consider a training set with Ns samples, i.e. {(xℓ, kℓ) | ℓ = 1, . . . , s}, where xℓ and

kℓ are the input vector and output value of the ℓth training sample, respectively. For

each hidden node h, let

φh =



ϕh (x1)
...

ϕh
(
xNs

)


,

and let ΦNh =

[
φ1 | . . . | φNh

]
denote the output matrix of all the hidden nodes over the

entire training set. The training objective is then

arg min
w

JNh (w) , (4)

where JNh (w) is the objective function

JNh (w) =
Ns∑

ℓ=1

(
kℓ − fNh (xℓ)

)2
=
∥∥∥k −ΦNh w

∥∥∥2
2 ,

where k =
[
k1 . . . kNs

]⊺ is the vector of target outputs and w =
[
w1, . . . ,wNs

]⊺ are the

output weights of the hidden layer. The solution to (4) is simply wNh = Φ
†k, where †

denotes the Moore-Penrose pseudoinverse.

3.4. Building the ELM network incrementally: EEM-ELM

In EEM-ELM [23, 26], hidden nodes are added to the NN incrementally. For each

hidden node h, the input weights ξh and bias term βh are generated randomly and

then fixed as additional hidden nodes are added. EEM-ELM provides a method of

updating the output weights w as each hidden node is added without retraining the

entire network. This reduces the complexity and running time of the training process.
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hidden node yields Φ̂Nh+1 =
[
Φ | φ̂Nh+1

]
. The following recursive relationship can be

used to compute ŵNh+1 efficiently [23, 26]:

QNh+1 =
((

I −ΦNhΦ
†
Nh

)
φNh+1

)†

TNh+1 =Φ
†
Nh

(
I − φNh+1QNh+1

)†

ŵNh+1 =


TNh+1

QNh+1

k.

Finally, at each iteration in EEM-ELM, j candidate hidden nodes are generated and

only the candidate yielding the best estimation error is permanently added to the ELM

network; thus

φNh+1 = arg min
φ̂Nh+1

Jn = arg min
φ̂Nh+1

∥∥∥∥k − Φ̂Nh+1ŵNh+1

∥∥∥∥
2

2

4. Numerical Results

In this section, we demonstrate and compare the performance of four different ap-

proaches for blocking probability evaluation in cellular networks, namely EFPA, IESA-

CN, Direct-NN, and our proposed IESA-NN.

4.1. Settings and datasets

We consider a 49-cell wraparound model as defined in Section 2.1. As in [13], we

designate a seven-cell cluster, denoted H, as the “hot cluster”, in which the arrival rate

to the BSs differs from the rest of the network by a ratio of α. In other words, for all

BS i, i ∈ {1, . . . ,G},

λi =



λ, i < H

αλ, i ∈ H.

Note that H is defined to contain one cell and its six neighbors, i.e. one of the colored

groups in Fig. 1.

To demonstrate that our proposed IESA-NN methodology can accurately and effi-

ciently evaluate blocking probabilities in mobile networks, in this section we consider
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Scenario Training

samples

Test samples Training set

blocking prob.

range

Test set blocking

prob. range

In-Sample-1 2337 1002 1.36 × 10−4 to 0.075

In-Sample-2 1377 386 1.36 × 10−4 to 0.01

Out-Sample-1 2088 1251 0.001 to

0.075

1.36 × 10−4 to

0.075

Out-Sample-2 1983 356 0.001 to 0.01 1.36 × 10−4 to

0.001

Table 4: Cellular Network Parameters for the Four Scenarios

Parameter Value(s)

λi, i < H 7 to 10

α 0.8 to 2

c 10

δ 1

N 6 (49-cell wraparound topology)

four scenarios, as described in Table 3. The training and test datasets for each scenario

are generated by regular sampling of the parameter space as shown in Table 4, with the

“true” blocking probability for each parameter setting found via computer simulation.

The training and test datasets are then filtered according to the blocking probability

ranges given in Table 3, giving the number of training and test samples shown. Note

that in Scenarios In-Sample-1 and In-Sample-2, the blocking probabilities for the train-

ing and test sets cover the same range, for Out-Sample-1 the ranges partially overlap,

and for Out-Sample-2 they are disjoint.

Figure 7 shows the training error (mean absolute logarithmic error) of Direct-NN

and IESA-NN as applied to In-Sample-1. The results show that both algorithms pro-

21



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Direct-NN (b) IESA-NN

Figure 7: Mean absolute logarithmic errors for Direct-NN and IESA-NN as applied to the In-Sample-1

scenario.

duce near-optimal error results within 100 hidden nodes. Therefore, we shall use

Nh = 100 hidden nodes for all remaining results in this paper. Note, however, that

since the NN in Direct-NN estimates the blocking probability directly whereas the NN

in IESA-NN estimates the tuning parameter k, the training errors of the two methods

are not comparable.

The accuracy of out-of-sample testing (e.g., scenarios Out-Sample-1 and Out-Sample-

2) is particularly useful and important in network design and optimization problems, es-

pecially in 5G URLLC (ultra-reliable low-latency communication) applications where

the target blocking probability is very low due to strict QoS requirements. In such ap-

plications, it is difficult and time-consuming to obtain accurate simulation results for

such low blocking probabilities. This can be avoided if the blocking probability of

such networks can be accurately estimated based on training data with higher blocking

probabilities, which are easier to simulate.

The approximation results are shown in Figs. 8–12 using scatter plots, where the

horizontal axes represent simulated blocking probabilities and the vertical axes rep-

resent blocking probabilities obtained by each of the approximation methods. For

Figs. 9–12, the distributions of the relative errors are also shown in histogram form.

4.2. In-sample scenarios

In this subsection, we examine the approximation results for scenarios where the

training and test sets are sampled from the same parameter range. First, we consider
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Figure 8: EFPA results for Scenario In-sample-1, as defined in Table 3.

the classical EFPA method as a separate case. Note that EFPA is purely teletraffic-

based and does not require a training set. However, the results, shown in Figure 8,

demonstrate that EFPA underestimates blocking probability by at least one order of

magnitude across the entire parameter range considered. Therefore, EFPA is not a

viable approximation method for network design and optimization.

Therefore, we shall hereafter focus on the other three approaches only, namely

IESA-CN, Direct-NN, and IESA-NN. The results of these three approaches for the

in-sample scenarios are shown in Figures 9 and 10. It is shown that the performance

of IESA-CN is the worst among the three methods, with a tendency to overestimate

blocking probability for small values. This is because due to the limited approximation

ability of the second-order polynomial and the restriction of k to integer values only.

On the other hand, the Direct-NN and IESA-NN approaches yield similar results for

both scenarios, with close to zero relative error in the large majority of cases, as shown

by the histograms in the bottom parts of Figures 9 and 10.

4.3. Out-of-sample scenarios

In this subsection, we examine the approximation results for scenarios where the

training and test sets are sampled from different parameter ranges. Results are shown

in Figures 11 and 12. The results demonstrate that IESA-NN is the most accurate

and robust among the three methods shown. In particular, Fig. 11 demonstrates that

Direct-NN, while accurate for the portion of the test set that overlaps with the training
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Figure 9: Results for Scenario In-Sample-1, as defined in Table 3.

Figure 10: Results for Scenario In-Sample-2, as defined in Table 3.
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Figure 11: Results for Scenario Out-Sample-1, as defined in Table 3.

Figure 12: Results for Scenario Out-Sample-2, as defined in Table 3. Note negative Direct-NN estimates

cannot be shown in the scatter plot, but are visible in the histogram (relative error less than -1).
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lower limit of the training set. Furthermore, Direct-NN can even produce negative

blocking probability estimates, as shown by some cases having less than negative one

relative error. This is not possible with IESA-NN.

On the other hand, the combination of an NN and teletraffic theory yields more ac-

curate and robust results than either approach alone. Recall that the abandonment pol-

icy defined by (3) creates bounds on the blocking probability estimated generated by

IESA, thus minimizing the effect of suboptimal choice of k when the blocking proba-

bility is low. The robustness of IESA-NN compared to Direct-NN is best demonstrated

in Fig. 12, where IESA-NN is shown to have a much tighter error distribution than

Direct-NN.

4.4. Discussion

From the results in this section, it is demonstrated that while Direct-NN gives the

best performance of the three methods under consideration when the test set parameter

ranges fall within those of the training set (Figs. 9 and 10), IESA-NN is the most robust

method when extrapolating to new parameter ranges not in the training set (Figs. 11

and 12). The reason for this is because of nature of NN – its purpose is to fit a regres-

sion to the data seen, without any interpretation of underlying structures. In contrast,

in IESA-NN, the NN component is only used to fit a tuning parameter, with the under-

lying teletraffic theory supporting IESA-NN providing some protection against wildly

inaccurate results. Additionally, whereas the range of possible blocking probabilities

in our training/test data spans several orders of magnitude, the search range for our

IESA-NN tuning parameter is much narrower, namely 7 to 49. This makes it easier for

the NN to fit the training data more accurately. Finally, while IESA-CN is similar to

IESA-NN in that a tuning parameter is used to adjust the IESA result, the polynomial-

regression-based method used in IESA-CN is less flexible than the NN-based method

in IESA-NN, thus leading to less accurate results for IESA-CN.

Note that although our generated training and test datasets in this section are ar-

tificial, the parameter space outlined in Table 4 covers a wide range of scenarios that

may appear in real situations. Therefore, our proposed method is expected to obtain

26



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofaccurate approximations in a computationally efficient manner even if real datasets are

used.

5. Concluding Remarks

In this paper, we proposed the IESA-NN approach for approximating blocking

probability in cellular mobile networks with user mobility, by combining classic tele-

traffic theory with neural network techniques. Blocking probability forms an important

metric in such networks. Specifically, IESA-NN adopts a neural network approach to

estimate a key parameter in the IESA framework. The results demonstrate that IESA-

NN significantly outperforms both direct-NN and pure teletraffic-based approaches,

especially when extrapolating beyond the parameter range of the training data. This is

because the NN portion of IESA-NN can compensate for inaccuracies in base IESA,

while the teletraffic theory underlying IESA controls extrapolation of IESA-NN in re-

gions that lack training data for the NN.

The improvement in accuracy of IESA-NN over previous approaches is important

for application scenarios such as 5G URLLC, where the request blocking probability

may be extremely low. Such cases cause accurate simulation of such networks to be-

come especially time-consuming, especially in optimization scenarios where blocking

probability results are required for a large number of parameter settings.

Appendix A. Derivation of EFPA

In addition to the notation defined in Table 2, we also define:

• ai,r,n — Offered traffic with starting cell i, n overflows and starting index r, in-

cluding both non-handover and handover requests. The BS receiving this traffic

is gi,r,n as defined by (2).

• ei,n — Total offered traffic to BS i with n overflows.

• Ai — Total offered traffic to BS i.

• Ai — Total carried traffic of BS i, including traffic that may undergo further

handover.
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Figure A.1: Update sequence for EFPA. Thick lines indicate updates for each iteration of the inner (n)

loop, while thin lines indicate updates for each iteration of the outer (i) loop. Note that multiple fixed-point

iterations are required for convergence. Numbers in parentheses refer to equation numbers in this paper.

• bi — Probability that all channels in BS i are busy.

• vi,r,n — Overflow traffic with starting cell i, n overflows, and starting index r.

The BS from which this traffic overflows is gi,r,n−1 as defined by (2).

• Bi — Non-completion probability for requests originating at cell i (before any

handovers), i.e., the probability that such requests are blocked (immediately) or

dropped (during handover).

We obtain

ei,n =
∑

(q,r):gq,r,n=i

aq,r,n (A.1)

Ai =

N∑

n=0

ei,n (A.2)

Ai = Ai (1 − bi) (A.3)

We also have

ai,r,0 =
λi

N
+

1
N2

∑

q:i∈Γq

Aqθ, (A.4)
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handovers from the neighboring cells of cell i. To explain (A.4), note that the handover

traffic Aqθ is first divided among all N neighbors of cell q, then among all N possible

starting indexes for R3S (corresponding to the “ j” index in ai, j,0).

Applying the Poisson assumption, we obtain

bi = E (Ai, c) (A.5)

and

vi,r,n = ai,r,n−1bi, (A.6)

where E (Ai, c) denotes the Erlang B formula with Ai Erlangs of traffic and c channels.

Based on the R3S routing policy, we obtain for all n ∈ {1, . . . ,N}:

ai,r,n = vi,r,n. (A.7)

The relationships between (A.1)–(A.7) form a system of fixed-point equations, as

illustrated in Fig. A.1. The equations can be solved via iterative substitution, with

initial values ai,r,0 ← λi/N and all other initial values set to zero. Finally, the overall

non-completion probability for requests with origin cell i is defined as

Bi = (1 − θ) bi +
θ

N

∑

q∈Γi

Bq. (A.8)

Appendix B. Derivation of IESA

As IESA, IESA-CN, and IESA-NN differ only in the method by which k is cho-

sen in equation (3) (see Figs. 3, 4, and 6), in this section we present a generic set of

equations encompassing all three approximation methods.

In addition to the notation defined in Table 2, we also define:

• ai,r,n, j — Offered traffic with starting cell i, n overflows, a congestion estimate of

j, and starting index r, including both non-handover and handover requests. The

BS receiving this traffic is gi,r,n as defined by (2).

• ei,n, j — Total offered traffic to BS i with n overflows and a congestion estimate

of j.
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gestion estimate of j or less, and starting index r.

• ei,n, j — Total offered traffic to BS i with n overflows and a congestion estimate

of j or less.

• Ai, j — Total offered traffic to BS i at level j of the IESA hierarchy, consisting of

requests with congestion estimates of at most j.

• Ai — Total carried traffic of BS i, including traffic that may undergo further

handover.

• vi,r,n, j — Overflow traffic with starting cell i, n overflows, a congestion estimate

of j, and starting index r, including both non-handover and handover requests.

The BS from which this traffic overflows is gi,r,n−1 as defined by (2).

• zi,r,n, j — Blocked or dropped traffic with starting cell i, n overflows, a congestion

estimate of j, and starting index r, including both non-handover and handover

requests. The BS from which this traffic overflows is gi,r,n−1 as defined by (2).

• bi, j — Probability that all channels in BS i are busy at level j of the IESA hier-

archy, i.e., all channels are serving requests with congestion estimates of at most

j.

By definition, we have:

ei,n, j =
∑

(q,r):gq,r,n=i

aq,r,n, j (B.1)

ai,r,n, j =

j∑

p=n

ai,r,n,p (B.2)

ei,n, j =

j∑

p=n

ei,n,p (B.3)

Ai, j =

N∑

n=0

ei,n, j (B.4)

ai,r,0,0 =
λi

N
+

1
N2

∑

q:i∈Γq

Aqθ. (B.5)
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bi, j = E
(
Ai, j, c

)
. (B.6)

To obtain the overflow traffic from BS i for a given congestion estimate j and n over-

flows, we consider two scenarios:

• In the first scenario, a request with n − 1 overflows and a congestion estimate

of j − 2 or less finds, with probability Bi, j−1 − Bi, j−2, that all channels at BS i

are busy and the most senior (highest congestion estimate) request at BS i has

a congestion estimate of j − 1. The incoming request exchanges congestion

estimates with the senior request and overflows with a new congestion estimate

of j (note that the congestion estimate is incremented upon overflow regardless

of whether exchange of congestion information occurs).

• In the second scenario, a request with n − 1 overflows and a congestion estimate

of exactly j− 1 find, with probability Bi, j−1,that all channels at BS i are busy and

all requests in service have congestion estimates of j − 1 or less. No informa-

tion exchange occurs and the incoming request simply increments its congestion

estimate by one upon overflow.

Thus we obtain

vi,r,n, j = ai,r,n−1, j−2

(
bi, j−1 − bi, j−2

)
(B.7)

+ ai,r,n−1, j−1bi, j−1

= ai,r,n−1, j−1bi, j−1

+ ai,r,n−1, j−2bi, j−2.

By definition, values with negative indices are all zero. Applying the abandonment

policy, we obtain

zi,r,n, j = vi,r,n, jPk,n, j (B.8)

ai,r,n, j = vi,r,n, j

(
1 − Pk,n, j

)
. (B.9)
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Finally, note that the highest level of the IESA hierarchy, containing all offered traffic,

is level k − 1. Therefore, the total carried traffic by BS i is

Ai = Ai,k−1
(
1 − bi,k−1

)
. (B.10)

Note that in our fictitious IESA surrogate model of the cellular network, the∆ andΩ

attributes of a request are reset to ∅ and 0, respectively, upon handover. This is because

congestion information about the neighborhood set of one cell may be irrelevant to

the neighborhood set of another cell. This creates the scenario where the amount of

handover traffic to each BS withΩ = 0 depends on the amount of overflow traffic in the

network with Ω > 0. Therefore, unlike previous applications of IESA such as video-

on-de mand networks that do not contain handovers, fixed-point iteration is required to

solve equations (B.1)–(B.10). A diagram of the relationships between (B.1)–(B.10) is

provided in Fig. B.1. The initial values for the fixed-point iteration are ai,r,0,0 ← λi/N

with all other values initialized to zero. Finally, the total blocked or dropped traffic for

requests with starting cell i (including handover requests) is

Zi =

N∑

r=1

N+1∑

n=1

k∑

j=N

zi,r,n, j, (B.11)

and the overall non-completion probability for requests with origin cell i is defined as

Bi = (1 − θ) Zi

λi
+
θ

N

∑

q∈Γi

Bq. (B.12)
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 We propose an improved method for efficient cellular network performance evaluation. 

 Combining teletraffic theory with neural networks boosts accuracy and robustness. 

 The neural network part improves accuracy over a pure teletraffic approach. 

 The teletraffic part aids robustness when extrapolating to new parameter ranges. 
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