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Non-Hierarchical Overflow Loss Systems

Yin-Chi Chan , Member, IEEE, and Eric W. M. Wong, Senior Member, IEEE

Abstract— Non-hierarchical overflow loss systems (NH-OLSs)
with mutual overflow have applications in many telecommuni-
cations and service systems, e.g., cellular networks, video-on-
demand, emergency healthcare, or cloud services. In this paper,
we make fundamental contributions in teletraffic modeling for
blocking probability evaluation in NH-OLSs. These are based on
the development of the well-known decomposition methodology,
which decomposes an NH-OLS into independent subsystems and
applies a suitable node model to each subsystem. In particular,
we provide new both theoretical and numerical results involving
both new and existing approximation methods. We show that
these results cover a broad range of NH-OLSs, including those
with heterogeneous arrival processes, server group size, and/or
routing, with both Poisson and non-Poisson arrivals of fresh
requests. Our theoretical results include the first scalable asymp-
totic exactness results for NH-OLSs. Our new approximations
include the first computationally efficient and fairly accurate
approximation for NH-OLSs with both mutual overflow and non-
Poisson input with asymptotic exactness properties.

Index Terms— Overflow loss systems, blocking probability,
mutual overflow routing, analytical approximation.

I. INTRODUCTION

OVERFLOW loss systems (OLSs) constitute an important
class of stochastic models which arise in a wide variety

of telecommunications and service systems applications. OLSs
are defined by a set of request types, a set of servers organized
into groups, and a policy for assigning each arriving request
to a server whenever possible. Requests are said to overflow
from one server group to another until an available server
is found, or are blocked and cleared from the system if all
possible server groups are fully occupied at the time of the
request’s arrival. The probability of a request being blocked
and cleared, known as the blocking probability, is an important
performance metric of OLSs.

In particular, in a non-hierarchical OLS (NH-OLS), requests
may attempt server groups in any arbitrary order. NH-OLSs
can be applied to a large number of real world applications;
for a list of examples, see Table I. However, accurate yet
computationally efficient evaluation of blocking probability
in NH-OLSs remains a long-standing open problem, having
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first been considered over a century ago in electromechanical
telephone switching systems [17]–[21], but still relevant today
as evidenced by the list of modern applications in Table I. The
main difficultly is the “curse of dimensionality”: the number
of possible states of an NH-OLS increases exponentially with
the number of server groups in the system. Furthermore, it is
known that systems with overflow do not possess a product
form solution [22], which means that exact analysis of the state
space of an NH-OLS is not a scalable method of blocking
probability evaluation. In particular, NH-OLSs can exhibit
what is known as mutual overflow [23]–[25]: overload at one
server group causes overflow to other server groups, in turn
overloading those server groups and causing overflow back to
the original server group. This causes a mutual dependency
between the states of different server groups.

Additional challenges occur when the arrival process of
fresh requests to the server groups is non-Poisson. This means
that the time to the next arrival of a fresh request to a
server group may be state-dependent. Modeling the state of
each arrival process on top of that of the server groups
further increases the dimensionality of the overall system state
compared to a system with Poisson arrivals of fresh requests.
As mutual overflow and non-Poisson arrivals are frequently
observed in NH-OLSs (see examples in Sections II-A and II-B,
respectively), the development of such an approximation
method is of high importance.

Due to the lack of a scalable exact method for blocking
probability evaluation, computer simulation is often used to
evaluate the performance of various NH-OLSs. However,
simulations are time-consuming, especially for large systems.
This disadvantage is especially important in optimization
problems where fast blocking probability evaluation of many
system configurations is key to an efficient optimization algo-
rithm. Therefore, the challenge is to construct a computation-
ally efficient yet accurate approximation method for a wide
range of NH-OLSs, including those with mutual overflow
and non-Poisson input. Due to the aforementioned “curse
of dimensionality”, a scalable approximation of the blocking
probability requires a dramatic reduction in the number of
states considered at any given time.

A. Decomposition as a Methodology for Blocking
Probability Evaluation in NH-OLSs

One well-known methodology for estimating blocking prob-
ability in NH-OLSs is to decompose the system into a set
of statistically independent nodes (each representing a single
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TABLE I

CORRESPONDENCE BETWEEN THE ABSTRACT NH-OLS MODEL AND REAL-WORLD APPLICATIONS

server group), applying appropriate node models to simplify
the analysis of the offered traffic of fresh and overflow
requests to each server group [15], [26], [27]. Due to the
decomposition, the computational complexity of the problem
can be significantly reduced. A well-known decomposition-
based approximation method in the literature is the Erlang
fixed-point approximation (EFPA) [15], [27], which applies
decomposition to the “true” system model, treating each server
group in the system as an independent Erlang B queue [28].
While EFPA is an accurate approximation for certain types
of networks [27], [29], [30], it has also been shown to
produce large approximation errors in NH-OLSs with mutual
overflow [31]–[33].

EFPA makes three major simplifying assumptions:
1) All traffic offered to a server group, both fresh and

overflow, is Poisson. In reality, overflow traffic generally
has a higher peakedness (variance-to-mean ratio) than
the offered traffic.

2) All traffic streams offered to a server group have the
same blocking probability. In reality, peakier traffic will
experience more blocking than smoother traffic [34].
Note that Assumption 1 implies Assumption 2 but not
vice versa.

3) The states (number of busy servers) of the server groups
are mutually independent.

Note that the first two assumptions stem from the use of
the Erlang B node model, whereas Assumption 3 stems from
decomposing the “true” system into independent subsystems.

Another decomposition-based method is the Informa-
tion Exchange Surrogate Approximation (IESA) [4], [8], [32],
[35], [36]. Unlike EFPA, which applies decomposition directly
to a “true” model of the NH-OLS, IESA addresses Assump-
tion 3 of EFPA by applying decomposition to a surrogate
system model, which is designed to preserve state dependency
information between server groups when decomposition is
applied. Therefore, the approximation error caused by decom-
position is much reduced compared to direct decomposition

Fig. 1. Design principles of the IES system model.

of the “true” model, as depicted in Fig. 1 (see Section III-B
for a detailed explanation of the IES surrogate model). How-
ever, as we shall show in this paper, both EFPA and IESA
are inadequate in approximating the blocking probability of
NH-OLSs offered non-Poisson fresh traffic, due to the assump-
tions associated with the Erlang B node model (i.e. Assump-
tions 1 and 2).

B. Contributions of This Paper

In this paper, we make fundamental contributions in teletraf-
fic modeling through the development of the decomposition
methodology for NH-OLSs, with new both theoretical and
numerical results involving both new and existing approxi-
mation methods. We show that these results cover a broad
range of NH-OLSs, including those with heterogeneous arrival
processes, server group size and/or routing, with both Poisson
and non-Poisson arrivals of fresh requests.

We consider a generic NH-OLS model with G server
groups and random routing, where each group consists of N
servers and each request may attempt a maximum k groups.
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We show that the offered load to each server group composed
of overflow requests tends towards Poisson and independent of
that to any other server group as G → ∞ with k fixed, as long
as the arrival processes of fresh requests to each server group
are mutually independent. Therefore, if the arrival processes
of fresh requests to each group are also Poisson and mutually
independent, then all three assumptions of EFPA, as listed in
Section I-A, become true and EFPA is asymptotically exact as
G → ∞ with k fixed. Even in the case where fresh requests
do not follow a Poisson process, the above result implies
that any decomposition-based approximation is asymptotically
exact for any arbitrary arrival process of fresh requests to
the system, as long as it uses the true system model (or a
model equivalent to the true model in the limiting case) and an
exact node model exists for each server group in the limiting
case where the overflow traffic to each server group becomes
independent Poisson processes.

Using the above result, we present a limiting regime (Limit-
ing Regime 1) where both EFPA and IESA are asymptotically
exact as G → ∞ with k fixed, provided that the arrival process
of fresh requests to each server group is an independent
Poisson process. Note that this result is very general and
holds even when the offered load of fresh requests to each
server group, the number of servers in each group, and/or the
number of server groups each request is allowed to attempt is
heterogeneous. As far as we know, these are the first results
on asymptotic exactness for NH-OLSs.

In addition, we also consider another limiting regime [33]
(Limiting Regime 2) where G = k and N = 1. We show for
Poisson arrivals of fresh requests that the IESA estimate is as
least as accurate as the EFPA estimate and that under critical
loading, the ratio of the exact blocking probability to the IESA
estimate is bounded above by

√
2, whereas the corresponding

ratio for EFPA was shown in [33] to be unbounded.
We also extend our results to the case where the arrival

process of fresh requests is non-Poisson by removing the
two assumptions of both EFPA and IESA associated with
the Erlang B node model. Note that existing approximations
that consider both non-Poisson traffic and mutual overflow,
for example [37], do not scale to a large number of overflow
streams offered to the same server group. In contrast, we use a
simple two-stream node model where all overflow traffic to a
server group is modeled as a single Poisson process, making
the node model scalable to NH-OLSs with a large number
of server groups. We show that modeling overflow traffic as
Poisson is asymptotically correct for NH-OLSs with random
routing as G → ∞ with k fixed, if the arrival processes of
fresh requests to each server group is mutually independent.

By applying EFPA and IESA with the new two-stream node
model, we create the new approximation methods EFPA-2S
and IESA-2S, respectively. Since the new two-stream node
model addresses Assumptions 1 and 2 above (those associated
with the Erlang B node model) and the IES system model
addresses Assumption 3, IESA-2S, which combines both the
two-stream node model and the surrogate system model,
depends on none of the three main simplifying assumptions
associated with EFPA. In addition, the scalability of the two-
stream node model means that EFPA-2S and IESA-2S are

both computationally efficient. Numerical results show that
IESA-2S is quite accurate even when the total number of
server groups is limited, especially compared to EFPA, IESA,
and EFPA-2S. As far as we know, IESA-2S is the first
fairly accurate yet computationally efficient approximation for
NH-OLSs with non-Poisson input. Note that EFPA-2S and
IESA-2S revert back to EFPA and IESA, respectively, when
the arrival process of fresh requests to each server group is
Poisson, thus maintaining backwards compatibility.

We prove that EFPA-2S and IESA-2S are both asymptoti-
cally exact for Limiting Regime 1 (i.e. G → ∞ with k fixed
and random routing) even when the arrival process of fresh
requests to each server group is non-Poisson. Similarly to our
result for NH-OLSs with Poisson input, we show that this
result applies even for heterogeneous systems. Furthermore,
this result does not depend on the nature of the arrival process
of fresh requests and holds true as long as the node model
associated with the input traffic is available and exact in
the limiting case, where the overflow traffic to each server
group becomes independent and Poisson. This is also demon-
strated numerically in this paper using interrupted Poisson
processes (IPP) [38] and Engset processes [39] for the arrival
processes of fresh requests to each server group.

In summary, our contributions in this paper are:
• Proof that under random routing, the arrival processes

of overflow requests to each server group tend toward
independent Poisson processes as G → ∞ with k fixed,
provided that the arrival process of fresh requests to each
server groups is independent of that to the other groups.

• For NH-OLSs with Poisson arrivals of fresh requests,
provided the arrival process of fresh requests to each
server group is independent of that to the other
groups:

– Proof that EFPA and IESA are asymptotically exact
for Limiting Regime 1, i.e. all three simplifying
assumptions listed in Section I-A become true (first
scalable asymptotic exactness results for NH-OLSs).

– Proof for Limiting Regime 2 that the IESA estimate
is as least as accurate as the EFPA estimate and that
under critical loading, the ratio of the exact blocking
probability to the IESA estimate is bounded above
by

√
2.

• For NH-OLSs with non-Poisson arrivals of fresh requests,
provided the arrival process of fresh requests to each
server group is independent of that to the other groups:

– The development of a scalable two-stream node
model for use with EFPA and IESA (thus produc-
ing new computationally-efficient approximations,
namely EFPA-2S and IESA-2S).

– Proof that EFPA-2S and IESA-2S are asymptoti-
cally exact for Limiting Regime 1, i.e. Assump-
tions 1 and 2 in Section I-A are removed, and
Assumption 3 becomes true (first scalable asymptotic
exactness results for NH-OLSs with non-Poisson
fresh requests).

– The first fairly accurate yet computationally efficient
approximation for NH-OLSs with non-Poisson input,
namely IESA-2S.
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• Overall, the further development of the decomposi-
tion methodology for blocking probability evaluation in
NH-OLSs, making fundamental contributions in teletraf-
fic modeling.

II. BACKGROUND AND RELATED WORK

A. Mutual Overflow in NH-OLSs

It is well known that non-hierarchical systems with mutual
overflow are often more efficient than their hierarchical coun-
terparts. For example, electromechanical switching systems
in early telephony were often designed as “slipped grad-
ings” [19], [20], so that each outlet would be the first choice
for a given set of incoming calls, the second choice for
another set of incoming calls, and so on. Non-hierarchical
architectures are also used to control the routing of calls
between switches, with AT&T’s implementation of dynamic
non-hierarchical routing providing significant cost savings
compared to the previous hierarchical network [40], and real-
time network routing [41] providing further cost savings
in addition to improved quality of service. Mutual over-
flow has also been shown to provide advantages in packet-
switching networks [42], manufacturing [43], and emergency
healthcare [8], and arises naturally in systems with spatial
considerations, such as cellular networks [1]–[4], file-sharing
networks [7], and emergency vehicular dispatch networks [9],
[10], where server preference depends on proximity.

B. Non-Poisson Arrivals in OLSs

The non-Poisson nature of arrivals is an important property
of packet-switched telecommunications networks. Both wired
and wireless networks have evolved over time to carry more
and more packet-based traffic; in fact, in modern telecommuni-
cation networks, even voice data is now packetized (i.e. voice
over LTE [44]). As packet traffic is burstier than Poisson [45],
it is important that blocking probability evaluation methods for
OLSs take the burstiness of the offered traffic into account.
In other words, the assumption of Poisson arrivals, while
suitable for circuit-switched networks (where arrivals are call
requests), is no longer applicable to packet-based telecommu-
nication systems and networks. On the other hand, in optical
networks, optical transmissions generally consist of many
consolidated IP packets, which has the effect of smoothing out
arrivals so that the arrival process of optical bursts is generally
smoother than Poisson [39].

Non-Poisson arrival processes are also useful in applying
overflow loss models to applications outside of telecommuni-
cations. For example, while Poisson processes are well-suited
for modeling arrivals of emergency patients to intensive care
units [46]–[48], this was found not to apply to patients under-
going scheduled elective operations [47], [49]. Non-Poisson
arrival processes are also observed for tasks arriving to a cloud
computing service (for example, a Poisson batch process is
considered in [50]) and video-on-demand sessions [51].

C. Analytical Approximation Methods for Blocking
Probability Evaluation in NH-OLSs

One analytical approximation method for blocking prob-
ability evaluation in NH-OLSs assumes complete homo-
geneity, thus approximating the system as Erlang’s Ideal

Grading (EIG) [18]. EIG is an NH-OLS that assumes that all
requests have the same exponential service time distribution,
arrive according to a Poisson process, and that each request
may attempt the same maximum number of servers and
may attempt these servers in random order. Erlang’s method
for computing the blocking probability of EIG is known as
Erlang’s interconnection formula (EIF) [18]. Unfortunately,
the simplicity of the EIG model means that EIF is ill-suited for
evaluating blocking probability in systems with heterogeneous
loading, heterogeneous routing and/or non-Poisson arrivals of
fresh requests.

Another method, and the focus of this paper, is decomposi-
tion. Decomposition is a method for approximating blocking
probability in NH-OLSs in a scalable manner by decomposing
a system model of an NH-OLS into independent subsystems.
A node model is then applied to each subsystem to estimate
the blocking probability of each individual subsystem.

Traditionally, decomposition-based approximation meth-
ods applied decomposition directly to the “true” system
model [15], [26], [27]. This is known to produce large approx-
imation errors when applied to NH-OLSs [31], due to the
state dependencies between the server groups being ignored.
Therefore, surrogate system models have been developed in
the literature to capture these dependencies in a way that
is preserved when decomposition is applied. These include
the the preemptive priority (PP) system model [5], [31], [33]
and the information exchange surrogate (IES) system
model [4], [8], [32], [35], [36], described in detail in
Section III-B. As the IES system model was shown in [32]
to outperform the PP system model, we shall focus on the
IES system model in this paper.

Once a system has been decomposed into independent
subsystems, a node model is required to describe the arrival
process of fresh and overflow requests to each subsystem.
As the actual arrival process of overflow requests to a
subsystem is very complex, node models generally seek to
approximate this process using a simpler process. For exam-
ple, in EFPA, the “true” system model is paired with an
Erlang B node model [28], in which both fresh and overflow
requests to each server group are combined and modeled
as a single Poisson process. The Erlang B node model has
also been applied to the PP system model in [5], [31],
and [33] and the IES system model in [4], [32], and [36].
Other node models model the combined arrival process to
a server group as an IPP [37] or as the overflow from an
Erlang B queue [52], while others separate fresh and overflow
traffic into multiple arrival streams [34], [53], [54]. In this
paper, we consider a scalable two-stream node model for non-
Poisson input traffic as described in Section V-A. In addition,
node models for processor-sharing queues are considered
for the true system model in [7] and for the IES system
model in [35].

III. SYSTEM MODELS

A. True System Model

We consider an NH-OLS with G server groups and G
requests types, so that requests of type g, g = 1, 2, . . . , G, will
always attempt group g first, then up to kg − 1 server groups
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in random order, selected at random from the remaining G −1
groups. Requests of type g, g = 1, 2, . . . , G, are blocked and
cleared from the system if and only if all kg server groups
attempted are fully occupied, i.e. no idle servers are available
in any of these kg groups. The number of servers in group
g, g = 1, 2, . . . , G, is denoted as Ng . The arrival process of
fresh requests to each server group is independent of that to
the other server groups, and the service time of each request
is exponentially distributed with unit mean.

To simplify our analysis, we will let Ng = N and kg = k for
all g = 1, 2, . . . , G, unless otherwise stated. Heterogeneous
cases where Ng and kg take on different values for different
values of g are considered in Section VII-C.

B. IES System Model
The IES system model [4], [32], [35], [36], [55] is

designed to address the independence assumption inherent in
decomposition-based approximations based on the true system
model. While similar to the true system model, the IES
system model is based on applying an information exchange
mechanism to the NH-OLS based on each request’s estimate
of the number of busy server groups in the system. Incoming
requests to the system can thus learn about the state of the
system as they overflow from one server group to the next.
This information is used to control the overflow behavior of
requests offered to the system. In this way, state dependencies
between server groups are encoded into the requests them-
selves, and are preserved when the system is decomposed
into independent server groups. For more details regarding
the rationale and general design principles of the IES system
model, see [4], [36].

Under the information exchange mechanism of the IES
system model, each request in the system has two attributes:
�, the set of visited server groups, and �, the estimated num-
ber of fully occupied server groups in the system (in layered
systems, such as those studied in [36], each layer is treated
as if it were a separate system). The value � forms the
basis of information exchange: when a request encounters a
fully occupied server group, it will swap � values with the
most senior (highest �) request in service if and only if the
incoming request is junior to (has a lower � value than) that
request. Fresh requests to the system always start with � = ∅
and � = 0.

Consider an overflowed request, such that the maximum
number of server groups which may be attempted is k.
Suppose this request has just overflowed from an arbitrary
server group with a given � and � value, such that |�| = n.
By assuming full independence between � and �, the proba-
bility that all remaining k −n attempts will all encounter fully
occupied server groups is estimated as

P�,n =

⎧
⎨⎨

⎨⎩

0, � < k
� �

k−n

�

� G
k−n

� , k ≤ � ≤ G.
(1)

In other words, the remaining k − n attempts and the identity
of the � fully occupied server groups are assumed to be
random and independent of the set of previously visited
server groups. This estimate is used to control the actual

behavior of overflowing requests in the surrogate system:
with probability P�,n , the request will abandon the system
without attempting the remaining k − n server groups. As a
result, the blocking probability of the IES system model is
generally slightly higher than that of the true system model.
This is partially offset by the approximation error caused by
the decomposition stage; due to the preservation of depen-
dency information, this error is much reduced compared to
decomposition of the true system model, as depicted in Fig. 1.

The IES mechanism creates a special hierarchical traffic
structure where all requests with an � value of j are unaffected
by the existence of any requests with an � value greater than j .
We will use the term “level j” to refer to an OLS under the
IES mechanism where all requests with an � value greater
than j are removed from consideration. As a result of the hier-
archical traffic nature of the information exchange mechanism,
decomposition-based approximation methods based on the IES
model have closed-form solutions when applied to NH-OLSs.
Also, the information exchange mechanism is independent
of the chosen node model. For example, [32] and [35] use
the Erlang B node model and a processor-sharing model,
respectively.

IV. APPROXIMATION METHODS FOR NH-OLSS WITH

POISSON ARRIVALS OF FRESH REQUESTS

In this section we derive formulas for two existing
decomposition-based approximation methods for NH-OLSs
with Poisson arrivals of fresh requests, namely EFPA and
IESA. For Poisson input traffic, we use an Erlang B node
model, such that the combined arrival process of fresh and
overflow traffic is treated as a single Poisson process. Let λ
denote the offered load to each server group composed of fresh
requests. Theoretical results are provided in Section VI-A for
the condition where the arrival process of fresh requests to
each server group is Poisson.

A. EFPA

EFPA combines the true system model with the Erlang B
node model. Let ãEFPA

n denote the offered load to each server
group composed of requests that have overflowed n times in
the system,

AEFPA =
k−1�

n=0

ãEFPA
n (2)

denote the total offered load to each server group, and

bEFPA = E
	

AEFPA, N



(3)

denote the blocking probability of each server group, where
E (A, N) denotes the Erlang B formula [28] with A Erlangs
of traffic and N servers. Due to the assumption that the states
of the server groups are mutually independent, we obtain

ãEFPA
n =

�
λ, n = 0

ãEFPA
n−1 b, 1 ≤ n < k.

(4)
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TABLE II

TABLE OF NOTATIONS FOR IESA

The above equations form a fixed-point system for which b can
be solved using fixed-point iteration [56]. Finally, the overall
blocking probability of the system is

BEFPA =
	

bEFPA

k = 1 − AEFPA

�
1 − bEFPA

�

λ
. (5)

Equation (5) uses the fact that AEFPA
�
1 − bEFPA

�
is the carried

load of each server group.

B. IESA

IESA combines the IES system model with the Erlang B
node model. We define our notation in accordance with
Table II. For simplicity, all variables with indices out of range
are defined to be equal to zero. By definition:

aIESA
j,n =

⎧
⎨⎨

⎨⎩

λ, n = j = 0

0, (n = 0) ∧ ( j > 0)

wIESA
j,n

�
1 − Pj,n

�
, 1 ≤ n < k

ãIESA
j,n =

j�

i=n

aIESA
i,n (6)

aIESA
j =

j�

n=0

aIESA
j,n

AIESA
j =

j�

n=0

ãIESA
j,n =

j�

i=0

aIESA
i , (7)

where Pj,n is defined according to (1). Applying the node
model, we obtain:

bIESA
j = E

	
AIESA

j , N



. (8)

To obtain wIESA
j,n for n > 1, we observe that there are two

ways for a request to overflow from a server group as an
(n, j)-request, i.e. with |�| = n and � = j :

1) A (n −1, j −1)-request arriving at a server group finds,
with probability bIESA

j−1 , that all servers are busy serving
requests with congestion estimates of j − 1 or less,
meaning that no information exchange occurs and the
incoming request overflows with an � value of j .

2) A (n−1, i)-request arriving at a server group, i ≤ j −2,
finds, with probability bIESA

j−1 − bIESA
j−2 , that all servers

are busy, with the most senior request in service having
a congestion estimates of exactly j −1. The two requests
swap � values, so that the request in service obtains a
new � value of i and the incoming request overflows
with an � value of j .

We thus obtain:

wIESA
j,n = aIESA

j−1,n−1bIESA
j−1 + ãIESA

j−2,n−1

	
bIESA

j−1 − bIESA
j−2




= ãIESA
j−1,n−1bIESA

j−1 − ãIESA
j−2,n−1bIESA

j−2 (9)

for all 1 ≤ n < k and n ≤ j < G, where ãIESA−1,n = 0 for all n.
The overall system blocking probability is

BIESA =
�k

n=1
�G

j=n wIESA
j,n Pj,n

λ

= 1 − AIESA
G−1

�
1 − bIESA

G−1

�

λ
, (10)

where AIESA
G−1

�
1 − bIESA

G−1

�
is the carried traffic per server group

at the final (i.e. (G − 1)th) level of the IESA hierarchy.

V. APPROXIMATION METHODS FOR NH-OLSS

WITH NON-POISSON INPUT

A. Two-Stream Node Model

We model the arrival process to each server group using two
separate arrival streams: a Markov process (e.g. IPP or Engset
process) representing the arrival stream of all fresh requests,
and a Poisson process representing the arrival stream of all
overflow requests. We define F as the arrival process of fresh
requests to each server group and pi

�
F , ap, N

�
as the block-

ing probability of a server group for fresh (i = 1) or overflow
(i = 2) requests, for a server group with N servers offered
process F of fresh traffic and Poisson overflow traffic with
intensity ap . Let λ denote the mean intensity of process F .
In Section VI, we show that as G → ∞ with k fixed, the
arrival process of overflow requests to each server group in
the NH-OLS becomes Poisson, meaning that our modeling of
overflow traffic as Poisson is asymptotically exact.
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In the following subsections, we derive two new
decomposition-based approximation methods for our NH-OLS
model for non-Poisson input traffic, called EFPA-2S and
IESA-2S, by combining the new two-stream node model with
the true system model and the IES system model, respec-
tively. In Section VI-B, we present theoretical results for our
NH-OLS model for the condition where the arrival process of
fresh requests is non-Poisson.

B. EFPA-2S

Recall that EFPA-2S combines the true system model with
the two-stream node model. Let bE2S denote the congestion
probability of overflow requests (i.e. requests with one or more

previous overflows) and b̂E2S denote the congestion probability
of fresh requests. Then

b̂E2S = p1

	
F , AE2S − λ, N



(11)

bE2S = p2

	
F , AE2S − λ, N



(12)

AE2S =
k−1�

n=0

ãE2S
n (13)

ãE2S
n =

⎧
⎨

⎩

λ, n = 0
λb̂E2S, n = 1
ãE2S

n−1bE2S, 2 ≤ n < k
(14)

BE2S = b̂E2S
	

bE2S

k−1

= 1 −
λ

	
1 − b̂E2S



+ �

AE2S − λ
� �

1 − bE2S
�

λ
, (15)

where ãE2S
n and AE2S

n correspond to their counterparts for

EFPA. In (15), λ
	

1 − b̂E2S



denotes the carried load for

each server group of fresh requests, and
�
AE2S − λ

� �
1 − bE2S

�

denotes the carried load for each server group of overflow
requests.

C. IESA-2S

Recall that IESA-2S combines the IES system model with
the two-stream node model. Let bI2S

j denote the congestion
probability of overflow requests (i.e. requests with one or more
previous overflows) and b̂I2S

j denote the congestion probability
of fresh requests, at level j of the IES hierarchy. We define
the remainder of our notation in accordance with Table II,
changing the superscript “IESA” to “I2S”. We obtain:

aI2S
j,n =

⎧
⎨⎨

⎨⎩

λ, n = j = 0

0, (n = 0) ∧ ( j > 0)

wI2S
j,n

�
1 − Pj,n

�
1 ≤ n < k,

ãI2S
j,n =

j�

i=n

aI2S
i,n

aI2S
j =

j�

n=0

aI2S
j,n

AI2S
j =

j�

n=0

ãI2S
j,n =

j�

i=0

aI2S
i .

Applying the node model, we obtain

b̂I2S
j = p1

	
F , AI2S

j − λ, N



bI2S
j = p2

	
F , AI2S

j − λ, N


.

Using a similar argument as for (9), we obtain:

wI2S
j,n = aI2S

j−1,n−1bI2S
j−1 + ãI2S

j−2,n−1

	
bI2S

j−1 − bI2S
j−2




= ãI2S
j−1,n−1bI2S

j−1 − ãI2S
j−2,n−1bI2S

j−2 (16)

for all 2 ≤ n < k and n ≤ j < G. For n = 1, we obtain

wI2S
j,1 = ãI2S

j,0 b̂I2S = λb̂I2S. Finally, the overall system blocking
probability is

BI2S =
�k

n=1
�G

j=n wI2S
j,n Pj,n

λ

= 1 −
λ

	
1−b̂I2S

G−1



+�

AI2S
G−1−λ

� �
1−bI2S

G−1

�

λ
, (17)

where λ
	

1 − b̂I2S
G−1



is the carried traffic per server group for

fresh requests, and
�

AI2S
G−1 − λ

� �
1 − bI2S

G−1

�
is the same for

overflow requests, at the final (i.e. (G − 1)th) level of the IES
hierarchy.

D. A Note on Arrival Process F

Note that EFPA-2S and IESA-2S are agnostic to the nature
of the arrival process F of fresh requests to each server group
and the implementation of the functions p1

�
F , ap, N

�
and

p2
�
F , ap, N

�
. In other words, any arrival process for fresh

requests may be used in these two approximation methods,
as long as p1

�
F , ap, N

�
and p2

�
F , ap, N

�
are computable.

VI. THEORETICAL RESULTS

In the limit as G → ∞ (with k fixed), two important
phenomena appear. Firstly, the two-stream model becomes
asymptotically exact, as long as the arrival process of fresh
requests to each server group is exactly modeled. Secondly,
the arrival process of requests to each server group becomes
independent of that to the other groups.

We shall provide an intuitive explanation of these phenom-
ena as follows. Firstly, any possible dependencies between two
overflow arrivals to a server group are reduced by a factor of
infinity as G → ∞. Therefore, by the central limit theorem,
the arrival process to each server group tends to Poisson as
G → ∞ and the two-stream model exactly models the behav-
ior of overflow traffic in the limiting case. Secondly, at any
given moment in time, the next requests to two different server
groups almost surely come from different sources (i.e. server
groups of the original attempts) as G → ∞, and therefore
the interarrival distributions of these two server groups are
independent, i.e. the arrival processes of the two groups are
independent.

We shall formalize these arguments below:
Lemma 1: As G → ∞ with k fixed, the arrival

process of overflow requests to each server group becomes
Poisson.
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Proof: Number the server groups arbitrarily from 1 to G,
and let t denote some arbitrary length of time, 0 < t < ∞. For
i = 2, 3, . . . G, let Ni (G) denote the number of arrivals in an
interval of length Gt to server group 1 of overflow requests
originating from server group i , i.e. group i was the initial
service attempt. Since, as G → ∞, the probability that any
two finite and disjoint sets of arrivals share any previously
attempted server groups in common tends to zero, the values
N2 (G) , N3 (G) , . . . and NG (G) become mutually indepen-
dent. Finally, the total number of arrivals of overflow requests
to Group 1 in that interval is the sum

�G
i=2 (Ni (G) /G),

which is Poisson distributed by the central limit theorem
as G → ∞.

Corollary 1: The two-stream node model is asymptotically
exact as G → ∞ with k fixed as long as the arrival process
of fresh requests to each server group is exactly modeled.

Lemma 2: As G → ∞ with k fixed, the arrival process of
requests to each server group becomes independent of that to
any other server group.

Proof: Consider the system at time t and let
f1 (t) and f2 (t) be the time until the next arrival to each
of two arbitrary server groups, labeled 1 and 2, respectively.
Since a request that has attempted server group 1 will attempt
server group 2 with probability zero as G → ∞, the two
arrivals to server groups 1 and 2, respectively, almost surely
come from two different requests. The probability that these
two requests come from the same source (i.e. server groups
of the original attempts) tends to zero as G → ∞, and the
probability that the two requests have attempted any server
groups in common also tends to zero as G → ∞. Therefore,
f1 (t) and f2 (t) are independent and the arrival processes of
server groups 1 and 2 are also independent.

A. Theoretical Results for EFPA and IESA for
Poisson Input Traffic

Proposition 1: IESA converges to EFPA as G → ∞.
Proof: As G → ∞, we obtain

Pj,n =
�

0, (n < k) ∨ ( j < G)

1, otherwise.

Therefore, aIESA
j,n = wIESA

j,n for all 1 ≤ n < k and all

0 ≤ j < G. Applying (6) and (9),

ãIESA
j,n =

j�

i=n

wIESA
j,n

=
j�

i=n

	
ãIESA

i−1,n−1bIESA
j−1 − ãIESA

i−2,n−1bIESA
j−2




= ãIESA
j−1,n−1bIESA

j−1 − ãIESA
n−2,n−1bIESA

j−1

= ãIESA
j−1,n−1bIESA

j−1 .

Thus for all 0 ≤ n < k and n ≤ j < G, we obtain

ã j,n =
�

λ, n = 0

ãIESA
j−1,n−1bIESA

j−1 , 1 ≤ n < k.
(18)

Equations (7), (8), and (18) are equivalent to (2)–(4), with
the exception of the additional subscript j . Therefore, as
G → ∞, lim j→∞ ãIESA

j,n approaches ãEFPA
n , lim j→∞ AIESA

j

approaches AEFPA, lim j→∞ b̂IESA
j approaches bEFPA, and

lim j→∞ bIESA
j approaches bEFPA. Therefore, as G → ∞,

BIESA (as computed via (10)) approaches BEFPA (as computed
by (3)). This completes the proof.

Intuitively, in the limit as G → ∞, requests in the IES
surrogate system model never abandon the system unless
|�| = k, i.e. P�,n = 0 for all � < ∞ and all n = |�| < k.
In other words, the IES surrogate system model converges to
the true system model in the limit as G → ∞, and therefore
IESA converges to EFPA.

Proposition 2: For Poisson arrivals of fresh request to each
server group, EFPA and IESA are both asymptotically exact
as G → ∞ with k fixed.

Proof: The arrival process of fresh requests to each server
group is defined to be Poisson and independent of that to any
other server group. By Lemmas 1 and 2, the same applies
to the arrival process of overflow requests when G → ∞.
Thus all three EFPA assumptions, as listed in Section I-A,
are true in the limiting case. Therefore, EFPA is asymptot-
ically exact. By Proposition 1, IESA is also asymptotically
exact.

Whereas the previous lemmas and propositions consider the
case of fixed k, we now consider the case of k increasing along
with G.

Proposition 3: For Poisson arrivals of fresh requests to
each server group and k = G, IESA is equivalent to a previous
approximation known as the Overflow Priority Classification
Approximation [31].

For a description of OPCA, a derivation of formulas for
our NH-OLS and a proof of Proposition 3, see the Appendix.
Based on theoretical results in [33], we provide the following
corollaries for Proposition 3:

Corollary 2: For Poisson arrivals of fresh request to each
server group, k = G, and N = 1, BEFPA ≤ BIESA ≤ B, where
B is the actual blocking probability of the system, i.e., IESA
is always at least as accurate as EFPA.

Corollary 3: For Poisson arrivals of fresh requests to each
server group, critical loading (λ = 1), k = G, and N = 1,
1 ≤ B/BIESA ≤ √

2.
As the same ratio for EFPA, i.e. B/BEFPA, tends to infinity

as k = G → ∞, as proved in [33], we have a limiting regime
where the approximation error of IESA is bounded but that of
EFPA is not.

B. Theoretical Results for EFPA-2S and IESA-2S for
Non-Poisson Input Traffic

Proposition 4: IESA-2S converges to EFPA-2S as G → ∞.
The proof of Proposition 4 is similar to that for Proposition 1

and uses the same intuitive argument: the IES surrogate system
model converges to the true model in the limit as G → ∞,
and therefore IESA-2S converges to EFPA-2S.

Proposition 5: EFPA-2S and IESA-2S are both asymptoti-
cally exact as G → ∞ with k fixed, if the node model exactly
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models the arrival process of fresh requests to each server
group.

Proof: The arrival process of arrival requests to each
server group is defined to be independent of that to any
other server group. By Lemmas 1 and 2, the arrival process
of overflow requests to each server group is defined to be
Poisson and independent of that to any other server group
when G → ∞. In other words, the two-stream node model is
asymptotically exact as G → ∞, and Assumption 3 of EFPA,
as listed in Section I-A, is true in the limiting case, while
Assumptions 1 and 2 have been removed. Therefore, EFPA-2S
is asymptotically exact as G → ∞. Due to Proposition 4,
IESA-2S is also asymptotically exact as G → ∞.

VII. NUMERICAL RESULTS

In this section, we consider NH-OLSs with different para-
meters and compare the accuracy of EFPA, EFPA-2S, IESA,
and IESA-2S compared to simulation results. Error bars in
each plot represent the 95% confidence intervals of the simu-
lation results, as calculated using Student’s t-distribution, but
may be too small to see in some cases.

For IPPs, we define λ	 as the arrival rate in the on state,
γ as the transition rate from the on state to the off state, and
ω as the transition rate from the off state to the on state. For
Engset processes, we define S as the number of sources and λ	
as the arrival rate per Engset source. For all arrival processes,
we define λ as the mean arrival rate and z as the peakedness.

A. Numerical Results for Homogeneous NH-OLSs

1) Blocking Probability With Respect to G: We consider
an NH-OLS where each request may attempt up to k = 10
server groups, with N = 20 servers per group. The arrival
process of fresh requests to each server group is an IPP
with λ	 = 26.174, γ = 4.793, and ω = 10.555, yielding
λ = 18 and z = 1.5 (see [38], [57] on how to compute λ
and z from λ	, γ , and ω). The blocking probability of the
system is shown in Fig. 2 for various values of G, the total
number of server groups in the system. The results show
numerical support for Propositions 4 and 5. Furthermore,
it can be seen that EFPA and EFPA-2S are constant in G.
This can be confirmed by observing that the formulas for
EFPA and EFPA-2S, in Sections IV-A and V-B, respectively,
do not involve the parameter G in any way. This is because
decomposition of the true system model assumes that the
states of all server groups are mutually independent. Finally,
IESA-2S is more accurate than the other three approximations
for all values of G, and is fairly accurate even for small to
moderate values of G despite the node model being designed
based on asymptotic behavior, as it is the only approximation
to address all three simplifying assumptions of EFPA listed
in Section I-A.

The running times for simulation and the four approxima-
tion methods are also shown in Fig. 2. The results demonstrate
that all four approximations are several orders of magnitude
faster than simulation.

Finally, we replace each IPP in the original scenario with
an Engset process with S = 30 and λ	 = 1.5, yielding λ = 18

Fig. 2. Blocking probability of an NH-OLS with k = 10 and N = 20 with
respect to G , with fresh requests to each server group forming an IPP with
a mean of 18 Erlangs and z = 1.5; also the running time for each evaluation
method.

Fig. 3. Blocking probability of an NH-OLS with k = 10 and N = 20 with
respect to G , with fresh requests to each server group forming an Engset
process with a mean of 18 Erlangs and z = 0.4.

and z = 0.4. The results, depicted in Fig. 3, also show support
for Propositions 4 and 5. Note that EFPA-2S and IESA-2S
produces smaller blocking probability estimates than EFPA
and IESA, respectively, when the arrival processes of fresh
requests are smooth. With the exception of where the lines for
simulation and IESA-2S cross the line for EFPA, IESA-2S is
the most accurate of the four approximation methods.

2) Blocking Probability With Respect to k: We consider
an NH-OLS with G = 20 groups of N = 20 servers each.
The arrival process of fresh requests to each server group
is an IPP with λ	 = 26.174, γ = 4.793, and ω = 10.555,
yielding λ = 18 and z = 1.5. The blocking probability is
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Fig. 4. Blocking probability of an NH-OLS with G = 20 and N = 20 with
respect to k, with fresh requests to each server group forming an IPP with a
mean of 18 Erlangs and z = 1.5.

Fig. 5. Blocking probability of an NH-OLS with G = 20, k = 10, and
N = 20 with respect to γ , with fresh requests to each server group forming
an IPP with a mean of 18 Erlangs and a peakedness of z = 1.5.

shown in Fig. 4 for various values of k, the maximum number
of server groups each request may attempt. The results demon-
strate very large approximation errors for EFPA and EFPA-2S
as k increases. This is because in these approximations, any
error in estimating the blocking probability of a single server
group is exponentiated by a factor of k for the entire system.
Furthermore, as k increases, the level of mutual overflow in
the system also increases, which increases the error caused
by assuming independence of the states of each server group
in the system. In contrast, IESA and IESA-2S, which take
dependencies between server groups into account using the
IES surrogate system model, are much more accurate than
EFPA and EFPA-2S for large k.

3) Blocking Probability With Respect to the Transition Rates
Between the Arrival Process States: We consider an NH-OLS
with G = 20 groups of N = 20 servers each, where each
request may attempt up to k = 10 server groups. The arrival
process of fresh requests to each server group is an IPP with
ω =

	

γ 2 + 146γ + 1 − γ − 1



/2 and λ	 = 18 (γ + ω) /ω,

yielding λ = 18 and z = 1.5. The results are shown in Fig. 5
for various values of γ, the transition rate from the on state
to the off state. The results demonstrate that the true blocking
probability and each of the approximations is not very sensitive
to the value of γ, suggesting that λ and z are sufficient to

Fig. 6. Blocking probability for an NH-OLS with respect to G , for G = k,
N = 1, and critical loading.

accurately model the system. In all cases, IESA-2S is the most
accurate approximation among all approximations considered.

B. Numerical Results for Homogeneous NH-OLSs
Under Critical Loading

We consider the special case of critical loading [58]–[60],
where the offered load of fresh requests to the system is equal
to the system serving capacity. Critical loading is an important
scenario since most networks operate in a regime where both
offered load and system serving capacity scale upwards in a
fixed ratio [59], and critical loading is the maximum loading
under such a regime where the blocking probability can be
made arbitrary low, e.g. in an Erlang B system.

1) Blocking Probability With Respect to G, Fixed k/G:
We consider an NH-OLS under critical loading, with G single-
server (N = 1) groups and full availability (k = G). We first
consider the case where the arrival process of fresh requests
to each server group is Poisson. Fig. 6 shows the blocking
probability of the system for various values of G. The results
show numerical support for Corollary 3. On the other hand,
it was shown in [33] that limG→∞ B/BEFPA = ∞. In other
words, in this limiting regime, the approximation error of
IESA is bounded but that of EFPA is not. This demon-
strates the importance of having a good surrogate system
model that can preserve information on the state dependencies
between server groups when decomposition is applied, and
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Fig. 7. Blocking probability with respect to G , for G = 2k, N = 20, and
IPP input with critical loading and a peakedness of z = 1.5.

Fig. 8. Blocking probability with respect to N , for G = 20, k = 10, and
IPP input with critical loading and a peakedness of z = 1.5.

the cascading effect of increasing k on the error of EFPA as
previously demonstrated in Section VII-A2.

We also consider an NH-OLS, again under critical loading
and with single-server groups, where the arrival process of
fresh requests to each server group is an IPP with z = 1.5. The
results are shown in Fig. 6 for k = G and Fig. 7 for k = G/2
(G even). Although Corollary 3 does not apply in this case,
it still appears that the approximation error is bounded for
IESA but unbounded for EFPA.

2) Blocking Probability With Respect to N: In this sce-
nario, instead of increasing the system capacity and load by
increasing the number of server groups, we increase the size
of each server group while keeping the number of groups
fixed. We consider an NH-OLS with G = 20 single server
(N = 1) groups, with k = 10. The arrival process of fresh
requests to each server group is an IPP with z = 1.5. The
blocking probability is shown in Fig. 8 for various values of N .
The results demonstrate that the approximation errors of EFPA
and EFPA-2S increase with N , while the errors of IESA and
IESA-2S appear to be bounded.

Intuitively, in a system at or near critical loading, the larger
the system size, the more sensitive the system is to changes in
the offered load. Therefore, in EFPA, any error in estimating
the overflow traffic to each server group in large systems leads
to increasingly larger errors in the estimation of the overall
blocking probability of the system.

Fig. 9. Blocking probability with respect to G , for G N = 1296, G = k,
and Poisson input with critical loading.

3) Blocking Probability With Respect to G = k, Fixed G N:
Among full-availability cases (G = k) with a fixed total
number of servers (i.e. G N), the case of N = 1 is the most
challenging as this maximizes k and therefore the error caused
by the independence assumption associated with decomposing
the true system model (see Section VII-A2 for an intuitive
explanation of the effects of increasing k on the accuracy
of EFPA). In this subsection, we consider an NH-OLS with G
server groups, G N = 1296 total servers, and critical loading.
The arrival process of fresh requests is a Poisson process. The
blocking probability is shown in Fig. 9 for various values
of G, demonstrating that the approximation errors of EFPA
and IESA are both maximized when G = 1296, i.e. when
N = 1. This again supports our claim that the case of N = 1
is the most challenging in terms of conquering the error caused
by the independence assumption. As Corollary 3 provides an
upper bound on the approximation error of IESA when N = 1,
we conjecture that this bound also applies to all cases where
N > 1. In other words:

Conjecture 1: For any NH-OLS with G groups of N servers
and full availability (k = G), where the arrival rate to
each server group of fresh requests is a Poisson process of
N Erlangs (critical loading), the ratio of the true blocking
probability to the IESA estimate, i.e. B/BIESA is bounded
by

√
2.

On the other hand, no such bound exists for EFPA, as proved
for N = 1 in [33].

C. Numerical Results for Heterogeneous NH-OLSs

In the previous subsections, we assumed that λg = λ,
zg = z, kg = k, and Ng for all g = 1, 2, . . . , G. In this
subsection, we consider cases where some of these assump-
tions are removed. We consider the following three scenarios
for various values of G:

1) kg = 10, Ng = 20, λg = 18 + 6 (−1)g , and zg = 1.5
for all g = 1, 2, . . . , G;

2) kg = 10 + 2 (−1)g , Ng = 20, λg = 18, and zg = 1.5
for all g = 1, 2, . . . , G; and

3) kg = 10, Ng = 20 + 2 (−1)g , λg = 18, and zg = 1.5
for all g = 1, 2, . . . , G.
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Fig. 10. Blocking probability and logarithmic error with respect to G for Scenarios 1–3 of Section VII-C, regarding heterogenous arrival rates, kg , and
server group sizes, respectively.

The results, shown in Fig. 10, demonstrate that IESA-2S
is fairly accurate even for heterogeneous NH-OLSs, espe-
cially compared to EFPA, IESA, and EFPA-2S. In particular,
the results show that Propositions 4 and 5 also apply to
the heterogeneous case, i.e. EFPA-2S and IESA-2S are both
asymptotically exact as G → ∞ with k fixed.

VIII. CONCLUDING REMARKS

In this paper, we present new developments for the decom-
position methodology for blocking probability evaluation in
NH-OLSs, making fundamental contributions in teletraffic
modeling covering a broad range of NH-OLSs, including those
with heterogeneous arrival processes, server group size and/or
routing, with both Poisson and non-Poisson arrivals of fresh
requests.

We consider a model of an NH-OLS with G server groups
and random routing of overflow requests and show that the
arrival processes of overflow requests to each server group
tend toward independent Poisson processes as G → ∞ with
k fixed, provided that the arrival processes of fresh requests to
each server group are mutually independent. For NH-OLSs
with Poisson input, we use this result (Lemmas 1 and 2)
to prove new asymptotic exactness results for EFPA and
IESA, which are decomposition methods using the Erlang
B node model. Among these are the first scalable asymp-
totic exactness results for NH-OLSs. We also demonstrate
a limiting regime in which the IESA estimate is at least
as accurate as the EFPA estimate, and where, under critical
loading, the ratio of the true blocking probability to the IESA
estimate, i.e. B/BIESA, is bounded above by

√
2, but B/BEFPA

is unbounded, showing the benefits of the IESA in captur-
ing mutual state dependencies between server groups which
EFPA cannot.

For NH-OLSs with non-Poisson input, we use Lem-
mas 1 and 2 to develop a new scalable node model which
models arrivals to a server group using two traffic streams,
one for fresh requests and one for overflow requests, where
the arrival stream for overflow requests is modeled as a single
Poisson process. We use this new two-stream node model to
develop two new decomposition-based approximation meth-
ods, namely EFPA-2S and IESA-2S. We show for an NH-OLS

with random routing of overflow requests that if the arrival
stream of fresh requests to each server group is independent
of that to the other groups, and is modeled exactly in the
node model for the limiting case, where the overflow traffic
to each server group becomes independent Poisson processes,
then EFPA-2S and IESA-2S are asymptotically exact as
G → ∞ with k fixed, just as EFPA and IESA are asymp-
totically exact if the arrival process of fresh requests to each
server group is Poisson and independent of that to the other
groups.

Due to the simplicity of the two-stream node model, both
EFPA-2S and IESA-2S are computationally-efficient, provided
that the arrival process of fresh requests to each server group
can be modeled as a simple process, e.g. IPP or Engset.
Furthermore, numerical results show that IESA-2S is gener-
ally quite accurate for NH-OLSs with IPP or Engset input
even when the number of server groups in the system is
limited, especially compared to EFPA, EFPA-2S, and IESA.
We conclude that IESA-2S is the first computationally efficient
and fairly accurate approximation with asymptotic exactness
properties for NH-OLSs with both mutual overflow and non-
Poisson input.

The node model developed in this paper can be applied
to more complex versions of IESA or EFPA for general
NH-OLSs. Note that IESA has been used in the literature to
approximate blocking probability in cellular networks [4] and
ICU networks [8], while EFPA has been applied to each of
the examples in Table I. Applying IESA-2S to applications
originally using IESA is simply a matter of replacing the node
model (e.g. an Erlang B queueing model) by the new two-
stream node model. On the other hand, applying IESA-2S
to applications originally using EFPA is simply a matter
of applying IESA to replace EFPA but with the new two-
stream node model instead of the original single-stream node
model.

APPENDIX

OPCA

A. PP System Model

In the PP system model [31], requests form an hierarchy
based on the number of previously attempted server groups.
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Each request carries a parameter � containing the set of
attempted server groups by that request. As in the true model,
an incoming request to server group g, g = 1, 2, . . . , G,
is served if there is at least one idle server. However, if the
server group is full, the request compares its � parameter,
which we denote �1, with that of the most senior (i.e. highest
|�|) request in service, which we denote �2. If |�1| ≥ |�2|,
then the incoming request overflows normally with a new �
parameter of �1 ∪{g}. However, if |�1| < |�2|, the incoming
request replaces the request in service. The request originally
in service then overflows as with a � parameter of �2 ∪ {g}.
In other words, requests with a smaller |�| have preemptive
priority in the PP system model.

As a result of the hierarchical traffic nature of the
preemptive priority mechanism model, decomposition-based
approximation methods based on this model have closed-form
solutions when applied to NH-OLSs. Also, the preemptive
priority mechanism is independent of the chosen node model.
For example, [31] and [35] use the Erlang B node model and
a processor-sharing model, respectively.

B. OPCA

OPCA combines the PP system model with the Erlang B
node model. Although OPCA has been shown to be less robust
than IESA [31], we use it in Section VI-A to prove various
analytical results regarding IESA.

Let the term n-request denote a request with � = n. Define:

• λ as the offered load of fresh requests to each server
group;

• aOPCA
n as the total offered load to a server group

composed of n-requests;
• AOPCA

n as the total offered load to a server group
composed of i -requests, i ≤ n; and

• bOPCA
n as the blocking probability of a server group at

level n of the PP system hierarchy, that is, the blocking
probability of a server group when only i -requests, 0 ≤ n,
are considered.

By definition, AOPCA
n = �n

i=0 aOPCA
i . Since we assume all

traffic, fresh and overflow, is Poisson, we obtain

bOPCA
n = E(AOPCA

n , N). (19)

From the OPCA mechanism, we obtain

aOPCA
n = aOPCA

n−1 bOPCA
n−1 + AOPCA

n−2 (bOPCA
n−1 − bOPCA

n−2 )

= AOPCA
n−1 bOPCA

n−1 − AOPCA
n−2 bOPCA

n−2 , (20)

with base cases aOPCA
0 = AOPCA

0 = λ and aOPCA
n = AOPCA

n =
bOPCA

n = 0 for n < 0. The above values can be found
iteratively for n = 0, 1, . . . , k −1. Finally, the overall blocking
probability of the system is estimated as

BOPCA = 1 − AOPCA
k−1

�
1 − bOPCA

k−1

�

λ
, (21)

where AOPCA
k−1

�
1 − bOPCA

k−1

�
is the total carried load of the

system.

Another way to compute AOPCA
n is to apply (20):

AOPCA
n =

n�

i=0

aOPCA
i

= aOPCA
0 +

n�

i=1

	
AOPCA

n−1 bOPCA
n−1 − AOPCA

n−2 bOPCA
n−2




= AOPCA
0 + AOPCA

n−1 bOPCA
n−1 , (22)

which can be interpreted as the initial offered load of fresh
traffic to each server group summed with the total offered load
of overflow traffic to each server group at level n of the PP
system hierarchy, which contains all requests with |�| ≤ n.

C. Proof of Proposition 3: Equivalence of
OPCA and IESA for G = k

Due to the similarities between (8) and (19), and
between (10) and (21), it suffices to show simply that AIESA

j =
AOPCA

n for all n = j = 0, 1, . . . , G − 1. Since Pj,n = 0 for
all n < G − 1 when G = k, we obtain a j,n = w j,n for all
1 ≤ n ≤ j < G. Applying (6) and (9), we obtain

ãIESA
j,n =

j�

i=n

aIESA
j,n =

j�

i=n

wIESA
j,n

=
j�

i=n

	
ãIESA

i−1,n−1bIESA
j−1 − ãIESA

i−2,n−1bIESA
j−2




= ãIESA
j−1,n−1bIESA

j−1 − ãIESA
n−2,n−1bIESA

n−1

= ãIESA
j−1,n−1bIESA

j−1 (23)

for all 1 ≤ n ≤ j < G. Applying (23) to (7), we obtain

AIESA
j =

j�

n=0

ãIESA
j,n = ãIESA

0,0 +
j�

n=1

ãIESA
j−1,n−1bIESA

j−1

= aIESA
0,0 +

⎛

⎝
j−1�

n=0

ãIESA
j,n

⎞

⎠ bIESA
j−1

= AIESA
0 + AIESA

j−1 bIESA
j−1 (24)

for all 1 ≤ j < G. Finally, since AIESA
0 = AOPCA

0 = λ, we
can show by induction that AIESA

j = AOPCA
n for all n = j =

0, 1, . . . , G − 1, using equations (22) and (24).
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