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No one likes this.
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Or this.
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Applications of  overflow loss 

systems

▪ Content Delivery Networks (CDNs)
– Choose closest available server with the requested file

– All servers busy = blocked request

▪ Cloud computing
– Consider speed, cost when assigning VMs to machines

– All physical machines full = blocked request

▪ Cellular/wireless networks
– Macro-cell/micro-cell layout

– Channel borrowing between cells

– No channel available = blocked request/call
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Question

How to model and evaluate congestion 
in overflow loss systems?

– Represented by blocking probability of requests
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Overflow Loss Systems

▪ Requests divided into classes, servers divided into 
groups

▪ Each server group serves some (or all) of the 
request classes

▪ Each request class has an ordered preference of 
server groups

▪ Requests overflow instantly from one server 
group to the next until an available server is found

▪ If all accessible servers busy, requests blocked and 
cleared
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Terminology

▪ Blocking probability

– Probability a request is blocked and cleared

▪ Availability

– Proportion of server groups serving a particular 
request class (0 to 1)

▪ Processor sharing

– Total service speed is constant, shared evenly 
among all active jobs in queue
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Assumptions We Will Make

1. Arrivals follow a Poisson process
– Assume time-homogeneity

2. Service durations are exponentially 
distributed
– Effect of assumption demonstrated in our paper to 

be small

▪ Combined: system can be described using a 
Markov chain
– # states: exponential in number of servers!

– Need approximation method
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History of Overflow Loss 

Systems
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Classical Example: Grading System

▪ Originally invented for telephony switching

▪ Each input group connected to some of the 
output lines (servers)

▪ Request blocked if no output lines (servers) 
available
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Early Methods for Balanced Traffic

▪ Listed in A. Lotze’s 1967 paper

– A. Lotze, “History and development of grading theory”, 
Proc. 5th International Teletraffic Congress, 1967

▪ Include:

– Erlang Interconnection Formula (c. 1920)

– Palm-Jacobaeus Formula (1940s)

– Modified Palm-Jacobaeus Formula  (1960s)

▪ Lotze 1967: these methods inadequate for 
unbalanced traffic
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Classical Example: Grading System

▪ Alfred Lotze, 1967: 

▪ Still true today, also relevant to more modern 
applications of overflow loss systems
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Fixed Point Approximation

▪ Classical approximation for telephony 
networks

▪ Idea:

– Treat server groups as independent

– Treat traffic (including overflows) as Poisson

▪ Adapted to systems of processor-sharing (PS) 
queues in 2012 (Muñoz-Gea et al.)

– We shall call this PS-FPA
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Inadequacies of  FPA

1. Poisson error: overflow traffic is not actually 
Poisson

– Propagation of error means error is worse when 
availability is high

2. Independence error: server groups not 
actually independent

▪ IESA designed to address these two error 
sources
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Information Exchange 

Surrogate Approximation
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The Surrogate in IESA

▪ Evaluate blocking probability of original model 
via a surrogate (different) model

▪ Model dependencies via use of information 
exchange between requests

▪ Use information to preemptively discard 
requests that are likely to be blocked

– Reduce Poisson and independence error when 
approximation is applied to surrogate model
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The Surrogate in IESA

▪ Approximate original (non-hierarchical) 
overflow structure with a hierarchical one

→Less error when assuming server independence + 
Poisson input as dependencies are one-way only

→IESA terminates in bounded number of iterations 
(avoid fixed-point solution)

▪ Traffic to a server at a given tier may depend 
on traffic to any server, but only for lower tiers
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The Surrogate in IESA

Countered by reduced
approximation error when 
applying approximation to 

surrogate

Surrogate system slightly 
alters blocking 

probability of system
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IESA is a Framework

▪ ICC 2005: IESA1 (originally OPCA)

▪ ITC 2013: IESA2

▪ INFOCOM 2015: two approximations for 
systems of processor-sharing nodes

– PS-IESA1

– PS-IESA2
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IESA2

▪ Request properties
– D, set of already attempted server groups

– W, congestion estimate (scalar)

▪ If server group is full:
– Find request in service with largest W (request A)

– If W of incoming request < W of request A, swap W
values

▪ W also increases by 1 for every overflow

▪ Overflowing requests are preemptively discarded
with a probability based on W and |D|
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Example

21

W = 7

47
6
8
9
20
1
2

W = 9

18
41
19
97
20
4
7

Server group 20: capacity = 2

W = 8

89
6
4
44
20
16
55

Incoming



Example
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Example
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NUMERICAL RESULTS
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Processor-Sharing Model

▪ Inspired by peer-to-peer VoD
– Peers: store movies, serve and generate requests
– Leeches: generate requests only
– Fixed content allocation

▪ Each peer is a single processor-sharing server
– Finite number of slots

▪ Popularity of each movie follows a Zipf
distribution: 𝜆𝑐 ∝ 𝑐−𝑧 for some z ≥ 0

▪ Availability of each movie directly proportional to 
its popularity
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Processor-Sharing Model

▪ Requests from each peer/leech form a Poisson 
process

– If peer requests a movie it can serve itself, no 
resources used up

▪ Assume each request requires an exponentially 
distributed service time with unit mean
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To Compare

▪ Processor-sharing version of EFPA

– PS-FPA

▪ Processor-sharing version of IESA1

– PS-IESA1

▪ Processor-sharing version of IESA2

– PS-IESA2

▪ Simulation
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Accuracy vs. Availability
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Both PS-IESA1 and PS-
IESA2 are
much more accurate 
than PS-FPA

PS-IESA2 is only 
approximation
to be (mostly) 
insensitive
to availability

2000 M/M/1/5-PS peers, 2000 contents, Zipf(0.271), target blocking = 0.005

Mean availability of movies

PS-IESA2

PS-IESA1



Accuracy for each Content Type
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2000 M/M/1/5-PS peers, 0.1 availability, 2000 contents, Zipf(0.271), target blocking = 0.005

PS-IESA2 captures 
blocking probability 
of individual content 
types more accurately 
than PS-FPA and PS-
IESA1

PS-IESA1

PS-IESA2

simulation



Concluding Remarks

▪ More data is available in the conference paper
– Demonstrates that PS-IESA2 is generally more accurate 

and robust than PS-FPA and PS-IESA1

▪ Further work
– Better surrogates for IESA
– Moment matching
– Application to other models

• IESA1 has been applied to optical networks and cellular 
networks

• Can do same for IESA2
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Q&A



Thank you
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